拉格朗日乘数法_拉格朗日乘数法在高考数学中的应用

拉格朗日乘数法是解决带有约束条件的多元函数极值问题的数学方法,通常涉及偏微分。然而,在高中阶段,我们可以简化这一概念,仅使用一元函数导数来解决高考中的最值问题。通过举例说明,解释如何在高中数学中应用拉格朗日乘数法,包括构造目标函数,对变量求偏导并解方程找到极值点。需要注意的是,求得的极值点还需要进一步判断是否为最值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f69c0bbf955fb81007ccb52938c69478.png

在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。[1]此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。——摘自百度百科

然而,在高中的学习中,我们只接触了一元函数的导数,对于希望在高考中迅速解决一些最值问题的同学来说,我们并不需要理解偏微分、全微分或者链法只需要掌握一元函数导数的方法即可,下面我们一同来看一道例题。

例1:在△ABC中,A=

,BC=2,则AB+AC的最大值为______。

在这道题中,我们由余弦定理不难得到一条关于b、c的等式:

而题目要求的就是

的最大值,对于
二元函数的条件极值问题,我们可以采用拉格朗日乘数法。
  • 首先构造

,

所求
的最值即为h的最值
  • 中的三个量
    求偏导,所谓求偏导就是分别对这三个变量求三次导,每次求导的时候不进行求导的变量看作常数。例如我们先对b求导:

仿照上例,我们继续写出

下一步,我们令上面三个式子都为0,解得:

考虑到b,c都是边长,是正数,所以取b=c=2这组解,解得b+c=4。

然而与求导类似,我们求出的是极值点,而非最值点,上题中第一组解为极大值,第二组解为极小值,还需要根据函数的一些性质来判断所求是否就是最值。在上题中,观察

这一条件,发现是椭圆,因此b、c的取值都有界,因此b+c有界,所以可以采用这一方法。

……未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值