
在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。[1]此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。——摘自百度百科
然而,在高中的学习中,我们只接触了一元函数的导数,对于希望在高考中迅速解决一些最值问题的同学来说,我们并不需要理解偏微分、全微分或者链法,只需要掌握一元函数导数的方法即可,下面我们一同来看一道例题。
例1:在△ABC中,A=
在这道题中,我们由余弦定理不难得到一条关于b、c的等式:
而题目要求的就是
- 首先构造
,
- 对
中的三个量
、
、
求偏导,所谓求偏导就是分别对这三个变量求三次导,每次求导的时候不进行求导的变量看作常数。例如我们先对b求导:
仿照上例,我们继续写出
下一步,我们令上面三个式子都为0,解得:
考虑到b,c都是边长,是正数,所以取b=c=2这组解,解得b+c=4。
然而与求导类似,我们求出的是极值点,而非最值点,上题中第一组解为极大值,第二组解为极小值,还需要根据函数的一些性质来判断所求是否就是最值。在上题中,观察
……未完待续