nmt模型源文本词项序列_TensorFlow NMT的数据处理过程

在tensorflow/nmt项目中,训练数据和推断数据的输入使用了新的Dataset API,应该是tensorflow 1.2之后引入的API,方便数据的操作。如果你还在使用老的Queue和Coordinator的方式,建议升级高版本的tensorflow并且使用Dataset API。

本教程将从训练数据和推断数据两个方面,详解解析数据的具体处理过程,你将看到文本数据如何转化为模型所需要的实数,以及中间的张量的维度是怎么样的,batch_size和其他超参数又是如何作用的。

训练数据的处理

先来看看训练数据的处理。训练数据的处理比推断数据的处理稍微复杂一些,弄懂了训练数据的处理过程,就可以很轻松地理解推断数据的处理。

训练数据的处理代码位于nmt/utils/iterator_utils.py文件内的get_iterator函数。

函数的参数

我们先来看看这个函数所需要的参数是什么意思:

参数解释

src_dataset

源数据集

tgt_dataset

目标数据集

src_vocab_table

源数据单词查找表,就是个单词和int类型数据的对应表

tgt_vocab_table

目标数据单词查找表,就是个单词和int类型数据的对应表

batch_size

批大小

sos

句子开始标记

eos

句子结尾标记

random_seed

随机种子,用来打乱数据集的

num_buckets

桶数量

src_max_len

源数据最大长度

tgt_max_len

目标数据最大长度

num_parallel_calls

并发处理数据的并发数

output_buffer_size

输出缓冲区大小

skip_count

跳过数据行数

num_shards

将数据集分片的数量,分布式训练中有用

shard_index

数据集分片后的id

reshuffle_each_iteration

是否每次迭代都重新打乱顺序

上面的解释,如果有不清楚的,可以查看我之前一片介绍超参数的文章:

tensorflow_nmt的超参数详解

我们首先搞清楚几个重要的参数是怎么来的。

src_dataset和tgt_dataset是我们的训练数据集,他们是逐行一一对应的。比如我们有两个文件src_data.txt和tgt_data.txt分别对应训练数据的源数据和目标数据,那么它们的Dataset如何创建的呢?其实利用Dataset API很简单:

src_dataset=tf.data.TextLineDataset('src_data.txt')

tgt_dataset=tf.data.TextLineDataset('tgt_data.txt')

这就是上述函数中的两个参数src_dataset和tgt_dataset的由来。

src_vocab_table和tgt_vocab_table是什么呢?同样顾名思义,就是这两个分别代表源数据词典的查找表和目标数据词典的查找表,实际上查找表就是一个字符串到数字的映射关系。当然,如果我们的源数据和目标数据使用的是同一个词典,那么这两个查找表的内容是一模一样的。很容易想到,肯定也有一种数字到字符串的映射表,这是肯定的,因为神经网络的数据是数字,而我们需要的目标数据是字符串,因此它们之间肯定有一个转换的过程,这个时候,就需要我们的reverse_vocab_table来作用了。

我们看看这两个表是怎么构建出来的呢?代码很简单,利用tensorflow库中定义的lookup_ops即可:

def create_vocab_tables(src_vocab_file, tgt_vocab_file, share_vocab):

"""Creates vocab tables for src_vocab_file and tgt_vocab_file."""

src_vocab_table = lookup_ops.index_table_from_file(

src_vocab_file, default_value=UNK_ID)

if share_vocab:

tgt_vocab_table = src_vocab_table

else:

tgt_vocab_table = lookup_ops.index_table_from_file(

tgt_vocab_file, default_value=UNK_ID)

return src_vocab_table, tgt_vocab_table

我们可以发现,创建这两个表的过程,就是将词典中的每一个词,对应一个数字,然后返回这些数字的集合,这就是所谓的词典查找表。效果上来说,就是对词典中的每一个词,从0开始递增的分配一个数字给这个词。

那么到这里你有可能会有疑问,我们词典中的词和我们自定义的标记sos等是不是有可能被映射为同一个整数而造成冲突?这个问题该如何解决?聪明如你,这个问题是存在的。那么我们的项目是如何解决的呢?很简单,那就是将我们自定义的标记当成词典的单词,然后加入到词典文件中,这样一来,lookup_ops操作就把标记当成单词处理了,也就就解决了冲突!

具体的过程,本文后面会有一个例子,可以为您呈现具体过程。

如果我们指定了share_vocab参数,那么返回的源单词查找表和目标单词查找表是一样的。我们还可以指定一个default_value,在这里是UNK_ID,实际上就是0。如果不指定,那么默认值为-1。这就是查找表的创建过程。如果你想具体的知道其代码实现,可以跳转到tensorflow的C++核心部分查看代码(使用PyCharm或者类似的IDE)。

数据集的处理过程

该函数处理训练数据的主要代码如下:

if not output_buffer_size:

output_buffer_size = batch_size * 1000

src_eos_id = tf.cast(src_vocab_table.lookup(tf.constant(eos)), tf.int32)

tgt_sos_id = tf.cast(tgt_vocab_table.lookup(tf.constant(sos)), tf.int32)

tgt_eos_id = tf.cast(tgt_vocab_table.lookup(tf.constant(eos)), tf.int32)

src_tgt_dataset = tf.data.Dataset.zip((src_dataset, tgt_dataset))

src_tgt_dataset = src_tgt_dataset.shard(num_shards, shard_index)

if skip_count is not None:

src_tgt_dataset = src_tgt_dataset.skip(skip_count)

src_tgt_dataset = src_tgt_dataset.shuffle(

output_buffer_size, random_seed, reshuffle_each_iteration)

src_tgt_dataset = src_tgt_dataset.map(

lambda src, tgt: (

tf.string_split([src]).values, tf.string_split([tgt]).values),

num_parallel_calls=num_parallel_calls).prefetch(output_buffer_size)

# Filter zero length input sequences.

src_tgt_dataset = src_tgt_dataset.filter(

lambda src, tgt: tf.logical_and(tf.size(src) > 0, tf.size(tgt) > 0))

if src_max_len:

src_tgt_dataset = src_tgt_dataset.map(

lambda src, tgt: (src[:src_max_len], tgt),

num_parallel_calls=num_parallel_calls).prefetch(output_buffer_size)

if tgt_max_len:

src_tgt_dataset = src_tgt_dataset.map(

lambda src, tgt: (src, tgt[:tgt_max_len

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值