可视化排班管理_亿景排班 ——用最短的时间遇见最大可能

近年来,国内经济快速发展,企业也在不断发展壮大,员工数量急剧扩充,线下客户同时也在大量增长。企业在实现业务快速增长的同时,在管理上也遇到了前所未有的挑战,线下销售人员数量众多难以管理,客户分布广泛难以掌控,这无疑给企业在销售人员拜访客户的过程中加大了难度。销售人员虽然众多,但每天拜访的客户数量却十分有限,外在的众多因素使得企业主和销售人员双双陷入困境。

企业主在抱怨,销售人员已经扩大了几倍,为何拜访的客户数量没有达到预期的效果?销售人员也在抱怨,每天超负荷的工作,不停的穿梭于客户之间,为何业绩提升如此有限?

企业的管理者意识到上述问题时,通常会引入传统的表格方式来进行排班排线的管理,传统的方式虽然能解决一小部分燃眉之急,但这种方式同时也带来了新的问题,大量的销售人员和客户资源使得传统的排班方式非常吃力,生成的排班表很难调整,牵一线而动全身。

鉴于企业遇到的上述问题,亿景智联从企业实际出发,基于时空大数据和人工智能技术推出了一套科学合理的排班排线产品—亿景排班

亿景排班,在加强企业对员工有效管理的同时还能够降低人力资源成本,让企业更加有力掌控客户资源,精细化管理销售人员和客户的拜访场景行为,根据员工技能熟练度、合规性、最优线路等实现最佳排班排线结果,使销售管理真正做到目标更明确、执行更标准,提升企业管理水平,降低人力成本,提高人员利用率。

核心技术ASE智能排班引擎 a62eb50c1fc0fadd2f23a821c165e178.gif

亿景排班产品充分考虑了企业管理者和一线销售人员的切身需求,为以上企业人员提供了贴身的产品功能。结合时空大数据和人工智能技术,自主研发了ASE(AI Schedule Engine)智能排班引擎,提供多重限制条件下的排班排线,同时,满足多种用户场景和多约束条件,动态规划线路,合理配置资源。92c8e6d64de86095a4c1d27ca2a9be16.png

eaa3b8d1335cd2537e4a8643c40992a3.png

ASE引擎部分约束条件

企业导入自己的客户数据,设置符合企业自身需求的参数设置到ASE智能排班引擎,通过基础服务算法、核心算法、约束检查器输出最优排班排线结果,产品提供客户位置及拜访线路地图可视化展示,同时也提供API接口服务,对接企业自有系统。

7c38dd77a55c53ae6c946477c3901f22.png92c8e6d64de86095a4c1d27ca2a9be16.pngASE引擎工作原理

智能排班排线规划 a62eb50c1fc0fadd2f23a821c165e178.gif

我们将传统表格排班方式可视化,使操作更加简洁同时提高信息整合程度。基于多约束条件下的智能算法规划能力,自动迭代优化路线规划模型,高效合理统筹排班规划及路线建议。通过日历可以查看每个销售人员每一天的拜访日程,同时产品推荐了最优的线路规划,大大提升了销售人员的拜访效率。92c8e6d64de86095a4c1d27ca2a9be16.png

4a93487b678fe54b0c9ebe148709e9bb.png 销售人员拜访日程管理 a62eb50c1fc0fadd2f23a821c165e178.gif

销售人员在移动端接收排班规划的每日拜访日程,同时支持销售人员临时、自主调整行程计划,使排班规划更加人性化,拜访更高效。智能引擎规划的拜访线路,充分考虑了销售人员的出行方式、拜访时长、休息时间以及客户的等级、重要度、拜访频次等多重约束条件。92c8e6d64de86095a4c1d27ca2a9be16.png

a97b9c1e66150eb23bb9765fd0b91b8c.png

拜访记录管理 a62eb50c1fc0fadd2f23a821c165e178.gif

拜访结束,产品提供了添加拜访记录的功能,让销售的每一次拜访都有据可查,不辜负销售人员的每一次努力!同时方便销售人员管理起自己的客户,通过查看以往的拜访记录,更好的推进与客户的关系维系。

d8a133074f955051ecbb731336f036be.png

管理端销售人员拜访情况实时统计分析 a62eb50c1fc0fadd2f23a821c165e178.gif

在企业管理人员端,管理者可实时查看每一个销售团队及成员的拜访情况,拜访客户的完成情况一目了然。同时产品提供了丰富的统计分析功能,通过对销售人员的拜访总里程、拜访客户总数等多维度分析,提高销售人员的管理水平,提升客户拜访的效率。管理端汇总的拜访记录,更是为管理决策者提供了客户分析的依据,助力企业业务的提升。

7697eed412359edc3d24c6ef95111fb1.png

亿景排班自投入市场以来,为众多企业提供了产品服务,如联合利华、西安杨森、永辉超市等零售企业率先应用亿景排班之后,销售拜访客户在途时长平均减少43%,单客户平均消耗里程减少55%,日均拜访客户数增加30%。这一串串的数字提升,是为企业实实在在节省的时间和人力成本,帮助企业更高效地完成业务规划。

亿景排班——用最短的时间遇到最大可能!

了解更多详情,欢迎点击读原文!

bb05d51c315e21e27b5bf257a811aa1d.png 联系我们 Email:service@changjing.ai 电话:400-616-2048官网 :www.changjing.com.cn b40d1ec25cdfc8fa221fa8e4d6fb1812.gif

660c8d36bf77b26c8012431282dcb0c4.png

8f801edec82f8c2b23391f9b04135ea1.png

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
全自动排班表使用说明 1、在设置好年份与表头。 "2、每年1月1日,在中按一个排班周期设置好人员名单,将自动生成全年排班表,   第一行就是1月1日上班人员,如使用该表时不是1月1日,可以通过调整中   的排班次序来获得之后日期的正确排班表。单元格内的多行人员代表当天几个班   (如三行就是早中晚),当天增加一个班,就在人员单元格内按[Alt-Enter]换行。" 3、在表中,请自行增加本年的节日,假日会以红底黑字增亮显示 4、在中设置好班次与工时。 5、在中可以自动统计每人每月或全年的工作量 "6、对于不规则情况的排班,如换班,可以在当月人员名单中手动更改,另外,如果每天   的班次大于三个,会出现单元格显示不下的情况,这时可以用快捷键来修改字体大小。" "7、快捷键:   Ctrl-q 所有表保护状态,只有人员显示栏可以更改   Ctrl-e 取消所有表的保护状态,所有栏都可编辑   Ctrl-r 所有表人员名称字体加大   Ctrl-t 所有表人员名称字体减小 Ctrl-p 下打印排班表 Alt-F4 退出EXECL" "8、注意事项:理论上没有限制,但由于单元格显示宽高度有限(字体太小影响显示效果),       本表建议适用一个班最多三人,一天最多四个班上班(四行)的情况,不符合       该条件的可以使用《排班表(考勤版)》解决。"
基于R语言的自编码器(autoencoder)可视化图像的方法,可以通过以下步骤进行: 1. 导入必要的库和数据集,比如MNIST手写数字数据集。 ```R library(keras) library(ggplot2) library(gridExtra) mnist <- dataset_mnist() x_train <- mnist$train$x y_train <- mnist$train$y x_test <- mnist$test$x y_test <- mnist$test$y ``` 2. 对图像进行预处理,将像素值归一化到0-1之间。 ```R x_train <- x_train / 255 x_test <- x_test / 255 ``` 3. 构建自编码器模型,使用Keras库实现。 ```R input_img <- layer_input(shape = c(784)) encoded <- input_img %>% layer_dense(units = 128, activation = "relu") %>% layer_dense(units = 64, activation = "relu") %>% layer_dense(units = 32, activation = "relu") decoded <- encoded %>% layer_dense(units = 64, activation = "relu") %>% layer_dense(units = 128, activation = "relu") %>% layer_dense(units = 784, activation = "sigmoid") autoencoder <- keras_model(inputs = input_img, outputs = decoded) ``` 4. 训练自编码器模型,并使用测试集对其进行评估。 ```R autoencoder %>% compile(optimizer = 'adam', loss = 'binary_crossentropy') autoencoder %>% fit(x_train, x_train, epochs = 50, batch_size = 256, shuffle = TRUE, validation_data = list(x_test, x_test)) decoded_imgs <- predict(autoencoder, x_test) ``` 5. 可视化原始图像和重构图像,对比两者的差异。 ```R n <- 10 original <- x_test[1:n, ] reconstructed <- decoded_imgs[1:n, ] original_m <- matrix(original, ncol = 28, byrow = TRUE) reconstructed_m <- matrix(reconstructed, ncol = 28, byrow = TRUE) original_gg <- ggplot() + geom_raster(aes(x = 1:28, y = 1:28, fill = original_m)) + scale_fill_gradient(low = "white", high = "black") reconstructed_gg <- ggplot() + geom_raster(aes(x = 1:28, y = 1:28, fill = reconstructed_m)) + scale_fill_gradient(low = "white", high = "black") grid.arrange(original_gg, reconstructed_gg, ncol = 2) ``` 以下是支持向量机(SVM)结果可视化的方法: 1. 导入必要的库和数据集,比如Iris鸢尾花数据集。 ```R library(e1071) library(ggplot2) iris <- datasets::iris() ``` 2. 对数据集进行预处理,将类别变量转化为数值变量,并将数据集分为训练集和测试集。 ```R iris$Species <- as.numeric(iris$Species) set.seed(123) train_index <- sample(1:nrow(iris), 100) train_data <- iris[train_index, ] test_data <- iris[-train_index, ] ``` 3. 构建SVM模型,并对其进行训练和测试。 ```R svm_model <- svm(Species ~ ., data = train_data, kernel = "linear", cost = 1) svm_pred <- predict(svm_model, test_data[-4]) svm_acc <- sum(svm_pred == test_data[, 5]) / nrow(test_data) * 100 ``` 4. 可视化SVM结果,使用ggplot2库绘制分类边界和数据点。 ```R svm_plot <- ggplot(train_data, aes(x = Sepal.Length, y = Petal.Length, color = factor(Species))) + geom_point(size = 3) + geom_smooth(method = "svm", formula = y ~ x, data = train_data, size = 1) + scale_color_discrete(name = "Species") + ggtitle(paste0("SVM Accuracy: ", svm_acc, "%")) svm_plot ``` 绘制的图像中,不同颜色的点表示不同类别的数据点,分类边界用实线表示。我们可以通过调整SVM模型的参数和选择不同的kernel,来获得更好的分类效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值