python模板匹配_python实现模板匹配

本文介绍了模板匹配的原理,强调了其在指定环境下的应用,并详细展示了使用OpenCV库在Python中实现模板匹配的代码示例,包括TM_SQDIFF_NORMED、TM_CCORR_NORMED和TM_CCOEFF_NORMED三种常见算法的解释和区别。通过匹配度的计算,确定最佳匹配区域并以矩形框标识。
摘要由CSDN通过智能技术生成

目录:

(一)原理

(二)代码实现和几种常见的模板匹配算法

正文:

(一)原理

在待检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。

作用有局限性,必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性。模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。它是图像处理中最基本、最常用的匹配方法。模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域。

(二)代码实现和几种常见的模板匹配算法

代码实现:

1 importcv2 as cv2 importnumpy as np3

4 deftemplate_demo():5 tpl = cv.imread("./temp.png")6 target = cv.imread("./1.png")7 cv.imshow("template image",tpl)8 cv.imshow("target image",target)9 methods = [cv.TM_SQDIFF_NORMED,cv.TM_CCORR_NORMED,cv.TM_CCOEFF_NORMED]  #各种匹配算法

10 th,tw &#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值