目录:
(一)原理
(二)代码实现和几种常见的模板匹配算法
正文:
(一)原理
在待检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。
作用有局限性,必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性。模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。它是图像处理中最基本、最常用的匹配方法。模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域。
(二)代码实现和几种常见的模板匹配算法
代码实现:
1 importcv2 as cv2 importnumpy as np3
4 deftemplate_demo():5 tpl = cv.imread("./temp.png")6 target = cv.imread("./1.png")7 cv.imshow("template image",tpl)8 cv.imshow("target image",target)9 methods = [cv.TM_SQDIFF_NORMED,cv.TM_CCORR_NORMED,cv.TM_CCOEFF_NORMED] #各种匹配算法
10 th,tw &#