基于Python图像处理—模板匹配

本文介绍了模板匹配在图像处理中的应用,这是一种用于识别和定位图像中特定图案的方法。虽然简单,但模板匹配对目标的旋转和大小变化不敏感。文章详细讲解了匹配算法,包括平方差匹配法、相关匹配法和相关系数匹配法,并列举了OpenCV库提供的6种模板匹配方法。此外,还展示了程序实现和处理结果。
摘要由CSDN通过智能技术生成

模板匹配

模板匹配是图像处理中最基本、最常用的匹配方法,能够实现对图像中某一特定图案(模板)的识别、定位,算法简单,类似于图像的卷积操作,模板匹配的局限性明显,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。

匹配算法

模板匹配的原理非常简单,模板遍历原图像中的每一个可能的位置,比较各处与模板是否“相似”,当相似度足够高时,就认为找到了我们的目标,评价匹配“好”和“坏”的算法有多种,OpenCV提供了6种模板匹配算法:平方差匹配法:利用平方差来进行匹配,匹配效果越好,匹配值越小。相关匹配法:采用模板和图像间的乘法操作,匹配效果越好,匹配值越大。相关系数匹配法:模版对其均值的相对值与图像对其均值的相关值进行匹配,1表示完美匹配,-1表示糟糕的匹配,0表示没有任何相关性。
(1)平方差匹配法:cv2.TM_SQDIFF
(2)归一化平方差匹配法:cv2.TM_SQDIFF_NORMED
(3)相关匹配法:cv2.TM_CCORR
(4)归一化相关匹配法:cv2.TM_CCORR_NORMED
(5)相关系数匹配法:cv2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值