模板匹配
模板匹配是图像处理中最基本、最常用的匹配方法,能够实现对图像中某一特定图案(模板)的识别、定位,算法简单,类似于图像的卷积操作,模板匹配的局限性明显,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。
匹配算法
模板匹配的原理非常简单,模板遍历原图像中的每一个可能的位置,比较各处与模板是否“相似”,当相似度足够高时,就认为找到了我们的目标,评价匹配“好”和“坏”的算法有多种,OpenCV提供了6种模板匹配算法:平方差匹配法:利用平方差来进行匹配,匹配效果越好,匹配值越小。相关匹配法:采用模板和图像间的乘法操作,匹配效果越好,匹配值越大。相关系数匹配法:模版对其均值的相对值与图像对其均值的相关值进行匹配,1表示完美匹配,-1表示糟糕的匹配,0表示没有任何相关性。
(1)平方差匹配法:cv2.TM_SQDIFF
(2)归一化平方差匹配法:cv2.TM_SQDIFF_NORMED
(3)相关匹配法:cv2.TM_CCORR
(4)归一化相关匹配法:cv2.TM_CCORR_NORMED
(5)相关系数匹配法:cv2.