先验概率和后验概率_概率(probability) 与似然(likelihood)

迁移学习我们经常可以看到边缘概率密度的概念,有点遗忘了,故总结一下。

全概率(由“因”导“果”,所以为什么不会是A和A补)

全概率的意义在于,直接求

十分困难,所以我们把事件
划分成小事件进行计算。这里注意并不是直接对
进行划分,而是对样本空间
进行划分:
. 每一个小事件
发生而导致
发生的概率全部加起来就是全概率公式
.而不是说
发生导致
发生的概率。

贝叶斯公式(条件概率)

由上面可以看出:

,

简单移项,就是贝叶斯公式。(佩服一下太厉害了真的,这都给他发现)

7dceee105e4233897a8bdd7d6503f7f9.png

这里牵涉到一些概念。把上面的

换成
换成
. 那么
就是隐含变量,可以把它理解成模型的输出或者是label;
就是观察变量,可以理解成模型输入或者模型参数。

  • :先验概率 ,表示对一个随机变量概率的最初认识;
  • : 似然,又叫类概密(类条件概率密度),表示在承认先验的概率下另一个与之相关的随机变量的表现。比如是男生且身高为170的概率。在某些论文中(如
    JDA)解释了通过预测类概密来预测后验概率是可行的;
  • :后验概率。表示当拥有X这个条件后Y的概率.

这里也说明白了其实似然概率其实是有一点区别的。简单理解为,在机器学习模型中,(后验)概率是为了值模型输出;而似然是指模型参数。

概率密度函数和边缘概率

边缘概率适合联合概率(eg: P(AB))对应的,单个变量如P(A),P(B)就是边缘概率。

在Transfer Learning 中,

就是特征空间,
就是边缘概率分布,就是特征分布。

如果

独立,那么
. 在迁移学习中这样就可能导致negative transfer。

边缘概率,联合概率,条件概率的关系:

5758110303578bb3d1d7be834b0d25fb.png

相信到这里已经对似然有了一个初步的了解了,那么似然函数又是什么呢?

要写出似然函数,我们必须先知道随机变量的分布率(概率密度函数)。

b9861d3ad4b22b264a1956cbed45052d.png
离散型随机变量的似然函数。如果是连续性变量,那么就是求积分。

很明显它是关于

(模型参数)的函数,我们所说的
Maximum likelihood estimation(最大似然估计法 )就是想在给定当前的模型参数下,出现事件
的概率。

举个例子,抛硬币正反面。出现正面的概率为

.通过5次实验,得出结果是:正反正正反。

那么似然函数就等于

.
我们希望这个概率是最大化(给定的事实最有可能实现,
应该取什么值?
)

接下来的操作就很简单了,总计一下:

  1. 写出似然函数。如果是离散型随机变量形式(如上面的例子),那么我们一般会做一个取对数处理,方便求导;
  2. 求导,令方程等于0;
  3. 解答。

补充:为什么直接求导进行了?显然似然函数是单调的。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据历史数据来调整先验概率似然函数是贝叶斯概率分析的重要应用之一。下面是一个简单的Python代码示例,演示如何使用历史数据来调整先验概率似然函数: ```python # 导入必要的库 import numpy as np # 定义贝叶斯概率函数 def bayes_probability(prior_prob, likelihood, evidence): numerator = prior_prob * likelihood denominator = np.sum(numerator) # 计算分母 posterior_prob = numerator / denominator # 计算后验概率 return posterior_prob # 假设我们有100期历史数据,其中有30期开奖号码为1,50期开奖号码为2,20期开奖号码为3。 # 调整先验概率 prior_prob = np.array([30/100, 50/100, 20/100]) # 先验概率 # 调整似然函数 likelihood = np.array([[0.5, 0.3, 0.2], [0.3, 0.5, 0.2], [0.2, 0.2, 0.6]]) # 似然函数 # 计算证据 evidence = np.array([1/3, 1/3, 1/3]) # 证据 # 计算后验概率 posterior_prob = bayes_probability(prior_prob, likelihood, evidence) # 打印结果 print("先验概率: ", prior_prob) print("似然函数: ", likelihood) print("证据: ", evidence) print("后验概率: ", posterior_prob) ``` 在此示例中,我们假设有100期历史数据,其中有30期开奖号码为1,50期开奖号码为2,20期开奖号码为3。我们可以使用这些数据来调整先验概率似然函数。 首先,我们使用历史数据计算每个数字的先验概率。在此示例中,我们将先验概率设为30/100、50/100和20/100,分别对应数字1、2和3的出现概率。 然后,我们使用历史数据计算每个数字的似然函数。在此示例中,我们使用一个3x3的矩阵来定义似然函数。该矩阵的每个元素表示在给定数字的情况下,下一个数字出现的概率。例如,当上一个数字为1时,下一个数字为1的概率为0.5,而下一个数字为2的概率为0.3。 最后,我们定义证据为每个数字的出现概率均为1/3。然后,我们调用贝叶斯概率函数来计算每个数字的后验概率。 在实际应用中,我们需要根据历史数据和其他因素来调整先验概率似然函数。例如,我们可以使用更多的历史数据,或者考虑其他因素如天气、人口统计学数据等来调整先验概率似然函数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值