spss正态性检验_论文实战 | 单样本的正态性检验

正态分布是统计分析中最重要的分布,也是应用很多假设检验方法的前提条件。 因此,很多时候,我们需要检验一组数据是否服从正态分布。 在对数据进行正态性检验时,通常遵循两个步骤: 第一步:通过图形观察数据是否满足正态分布。 图形可以直观地展示数据的分布形态,可用于初步判断数据是否满足正态分布。 茎叶图、直方图、箱线图和正态Q-Q图都可以用来帮助观察数据是否满足正态分布。 在《SPSS常见图表一览》中向大家介绍了这几种图形。 但单纯通过图形观察数据是否满足正态分布存在一定的主观性,接下来还需要开展最关键的第二步骤。 第二步:通过假设检验检查数据是否满足正态分布。 正态性检验的原假设是: 数据满足正态分布;因此,如果P值>0.05,则认为数据满足正态分布。 值得注意的是,在SPSS中对数据 进行正态性检验的方法 有两种,它们分别是: ① 柯尔莫戈洛夫-斯米诺夫检验(Kolmogorov-Smirnov test),简称K-S检验; ② 夏皮洛-威尔克检验(Shapiro—Wilk test),简称S-W检验。 这两种方法的异同,我在《 正态性检验方法 —— K-S检验和S-W检验的区别 》这篇推文中进行了详细的介绍,大家可以参阅。 通常,我们可以直接应用单样本K-S检验来对数据进行正态分布检验。 同时,在SPSS中对数据 进行正态性检验的菜单 也有两种: ① 使用分析 -> 描述统计 -> 探索菜单检验数据是否满足正态分布; ② 使用分析 -> 非参数检验 -> 单样本非参数检验菜单检验数据的分布形态。 接下来,我会在本文中向大家分别介绍这两种操作方法。

案例分析

在此,我将使用SPSS中的自带数据集 aflatoxin.sav 为案例数据,向大家介绍在SPSS中如何检验数据是否服从正态分布。 打开数据集: 选择文件 -> “欢迎”对话框,在欢迎对话框中选择样本文件,选择aflatoxin.sav,选择打开。 SPSS会自动打开这份数据文件。 70e9737478c840bf71ee82594c26e7b2.png 这份数据文件中有128行数据,分别记录了8种产量的黄曲霉毒素含量,部分数据截图如下所示: 17986cd44b07fb1cb843261821fd9008.png 假设检验: 我们想要检验黄曲霉毒素变量的数据是否服从正态分布。 原假设和备择假设如下: H0: 黄曲霉毒素变量的数据服从正态分布; H1: 黄曲霉毒素变量的数据不服从正态分布; α=0.05 检验方式一: 选择分析 -> 非参数检验 -> 单样本非参数检验菜单项。 在目标选项卡不需要更改选择,保持默认选项即可; 在字段选项卡,将需要分析的黄曲霉毒素变量选入检验字段; 在设置选项卡,选择定制检验,并勾选检验实测分布和假设分布(柯尔莫戈洛夫-斯米诺夫检验),在相应的选项中默认选择进行正态分布检验即可。 完成后,点击运行。 对话框如下所示: fa032d9558ee154b9b9978cae581b059.png c85a26f275e40fbb3bfe8db75bc5ffea.png 得到的分析结果如下所示: b94372bab87885330acdd0b17b0c761d.png 上述只是简单地分析汇总表,双击这个表格,可以进入编辑状态得到更为详尽的结果描述,如下图: 16d87a4553293acc8049e3c0b0268151.png 可以看到, 左侧主视图 给出了分析结果的汇总信息。该菜单项使用的正态性检验方法是K-S检验,得到的正态性检验的P值为0.200,远大于0.05,因此要保留零假设H0,认为黄曲霉毒素变量的数据分布服从正态分布。 右侧的辅助视图 给出了更详细的信息。黄曲霉毒素变量的平均值为23.82,标准差为11.312;在128例样本中,实际分布和假设分布之间的正向最大极差为0.070,负向最大极差为-0.040,因此用于计算统计量的绝对值最大极差为0.070,相应的P值远大于0.05。 检验方式二: 选择分析 -> 描述统计 -> 探索菜单项。 将需要分析的黄曲霉毒素变量选入因变量列表; 在选项卡,默认输出因子级别并置的箱图,并勾选直方图含检验的正态图,点击继续,点击确定。 对话框如下所示: c0dafd1c954f35ed05f2bf3feec52cbb.png 得到的分析结果如下所示: c9d515809956b59f370ccd88794f18d5.png ff3c0f4f7bd65a31195dedd1705d317d.png c0db764117e9ff69b52d63a094d3faf2.png 探索性分析结果对数据的描述很详细,不仅输出了文字性的描述统计量,而且还能输出直方图和箱线图,以及Q-Q图来辅助查看数据的分布形态。 从输出的图表来看,数据虽然不完全服从正态分布,但整体还是呈中间高两边低的正态分布形态的。 具体看 正态性检验 结果。该菜单使用了K-S检验、S-W检验这两种方法对数据进行正态性检验。在本案例中,使用K-S检验 (红色框) 得到的P值为0.200,大于0.05,认为数据服从正态分布;但使用S-W检验 (橙色框) 得到的P值为0.001,小于0.05,认为数据不服从正态分布。 此时我们应该如何下结论呢? 因为K-S检验适合用于大数据样本的正态性检验,当样本的数据量超过50行时,它被认为是一个大样本。 我们这个案例的样本数为128,因此我们倾向于看K-S检验的分析结果得出结论。因此,我们要保留零假设H0,认为黄曲霉毒素变量的数据分布服从正态分布。 当然,在实际的研究过程中,为了保证研究的严谨性,我建议大家将两种结果都进行说明。 以上就是在SPSS中进行单样本正态性检验的详细过程,大家可以打开SPSS自行操作练习,更多扩展阅读可点击以下两篇推文: R语言中5种正态性检验的方法 数据的正态性检验与数据转换 最后,本文主要摘自松鼠的 《SPSS论文数据分析实战》 课程,如果你想要通过视频更快更系统地学习更多SPSS知识,可以点击文末,学习这套课程哦~

SPSS中进行正态性检验,可以通过如下步骤: 1. 打开数据文件,选择Analyze -> Descriptive Statistics -> Explore; 2. 在Explore对话框中,将需要检验正态性的变量添加到Dependent List中; 3. 在Statistics选项卡中,勾选Descriptives和Plots; 4. 在Plots选项卡中,勾选Normal Probability Plot; 5. 点击OK,观察输出结果中的Normal Q-Q Plot。 如果Normal Q-Q Plot呈现近似直线的趋势,则说明数据近似正态分布;如果呈现曲线、弯曲等非线性趋势,则说明数据不服从正态分布。 在R中进行正态性检验,可以使用如下命令: 1. 安装并加载nortest包:install.packages("nortest")和library(nortest); 2. 使用lillie.test()函数进行Lilliefors检验:lillie.test(x); 3. 使用shapiro.test()函数进行Shapiro-Wilk检验:shapiro.test(x); 4. 使用ks.test()函数进行Kolmogorov-Smirnov检验:ks.test(x, "pnorm", mean(x), sd(x))。 其中x为需要检验正态性的变量。 对于几何均值的计算,可以在SPSS中使用如下命令: 1. 打开数据文件,选择Transform -> Compute Variable; 2. 在Compute Variable对话框中,输入新变量名称并定义计算公式,如geomean=log(mean(variable)); 3. 点击OK,新变量将被添加到数据文件中。 在R中计算几何均值,可以使用如下命令: 1. 安装并加载Hmisc包:install.packages("Hmisc")和library(Hmisc); 2. 使用Hmisc包中的geometric.mean()函数计算几何均值:geometric.mean(x)。 其中x为需要计算几何均值的变量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值