矩阵内积运算法则_矩阵乘法核心思想(1):列空间

本文探讨矩阵乘法的核心思想,从列空间的角度出发,解释矩阵乘法实际上是矩阵列向量的线性组合。列空间的概念对于理解线性方程组的解至关重要。机器学习中,算法寻求的是实用主义的近似解。建议学习线性代数时避开以行列式开篇的书籍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

acfc78792b7ecd7b57bcb6995aeee9be.png

初次接触矩阵乘法时,你是否感觉和矩阵加法相比,矩阵乘法不仅怪异而且枯燥繁复。这不怪你,这种方法适合电脑计算,却不适合人脑理解。以矩阵-向量乘法为例,大部分教科书从行的角度来计算:

这种以行为主的思想进行内积运算,也称点积运算,将左矩阵(

)第1行和右矩阵(
)第1列(上例是向量,可视为1列的矩阵,
)进行点积,进行
次乘法和
次加法才得到结果矩阵的第1行第1列元素
,这种计算方式颗粒度太细,机器运算起来非常高效,却不利于我们理解;从更高的维度 ——
列向量来看,结果相同但更清晰:

以列为主的视角将矩阵乘法视为对矩阵的列向量进行线性组合,这是线性代数非常重要的本质和基础,并很自然地引出了列空间的概念。

a1ce59574c2c1a8f98fc4a8f6021369c.png

我们知道:两条相交的直线确定一个平面。

为任意实数,
能组合出一个
的2维平面空间内的任何向量,显然,该平面只是3维空间
中无数平面中的一个(子空间),但对于位于该平面内的任意向量
, 一定存在
,使得
,该平面是这两个向量所张成(Span)的
列空间(Column Space),这两个向量是列空间的基(Basis),通过对基的线性组合,可以得到空间内的任意向量,难怪有人说线代是"搞基"。

列空间由矩阵

的列向量线性组合(Linear Combination)填充而成,记为

线性代数的初心和核心是求解

的矩阵,以列向量表示:
分别是
的向量,
位于
的列空间时,
一定存在解
表达为
的列向量线性组合

74d33f7a16ce3852e6a74ffccf11bd03.png
u,v通过线性组合张成的空间

如果

位于
的列空间
之外,问题变成了常规的 线性回归,列向量无论进行怎样的线性组合都不可能组合出平面外的
,此题无解,我们退而求其次,找一个近似解
,使
尽量靠近
,但必须在平面(列空间)内,显然,
在平面的
投影是平面内离
最近的那个点,具体可参考Normal Equation的向量投影解法与几何和直觉解释。

P.S. 机器学习场景中,

的行数和列数分别对应样本数和特征(字段)数量,样本数往往远大于特征量(图像问题相反),比如1000个样本10个特征,小学数学多元一次方程组的知识告诉我们:1000个方程只有10个变量是无解的,被称为超定(Overdetermined)。

本质上,机器学习算法提供的不是数学意义上准确解,而是个实用主义的近似解,毕竟,比无解要好很多。

顺便提一句,当你拿起一本线性代数书籍,如果第一章是行列式,建议立刻马上放下它,因为它会浪费你的时间,加大你理解矩阵的难度。

*本文主要思想来自Gilbert Strange的18.06。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值