python和java和scala_python – 如何从一个动作或转换使用Java/Scala函数?

背景

当我们使用Scala API a recommended way获得使用DecisionTreeModel的RDD [LabeledPoint]的预测是简单地映射在RDD上:

val labelAndPreds = testData.map { point =>

val prediction = model.predict(point.features)

(point.label, prediction)

}

不幸的是,PySpark中类似的方法不能很好地工作:

labelsAndPredictions = testData.map(

lambda lp: (lp.label, model.predict(lp.features))

labelsAndPredictions.first()

Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforamtion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see 07002.

predictions = model.predict(testData.map(lambda x: x.features))

labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)

那么这里发生了什么?这里没有广播变量,Scala API定义预测如下:

/**

* Predict values for a single data point using the model trained.

*

* @param features array representing a single data point

* @return Double prediction from the trained model

*/

def predict(features: Vector): Double = {

topNode.predict(features)

}

/**

* Predict values for the given data set using the model trained.

*

* @param features RDD representing data points to be predicted

* @return RDD of predictions for each of the given data points

*/

def predict(features: RDD[Vector]): RDD[Double] = {

features.map(x => predict(x))

}

所以至少在第一眼看来,从动作或转换调用不是问题,因为预测似乎是本地操作。

说明

callJavaFunc(self._sc, getattr(self._java_model, name), *a)

在DecisionTreeModel.predict的情况下,有一个建议的解决方法,所有必需的代码已经是Scala API的一部分,但有什么优雅的方式来处理这样的问题一般?

只有我现在可以想到的解决方案是相当重量级:

>通过扩展Sp​​ark类通过隐式转换或添加某种包装器将所有内容推送到JVM

>直接使用Py4j网关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值