火花2.0+:
Python:df.approxQuantile("x", [0.5], 0.25)
斯卡拉:df.stat.approxQuantile("x", Array(0.5), 0.25)
其中最后一个参数是相对误差。数值越小,结果越精确,计算量越大。
由于Spark 2.2(SPARK-14352),它支持对多个列的估计:df.approxQuantile(["x", "y", "z"], [0.5], 0.25)
以及df.approxQuantile(Array("x", "y", "z"), Array(0.5), 0.25)
火花<;2.0
Python
正如我在评论中提到的,这很可能不值得大惊小怪。如果数据相对较小(如您的情况),则只需在本地收集和计算中值:import numpy as np
np.random.seed(323)
rdd = sc.parallelize(np.random.randint(1000000, size=700000))
%time np.median(rdd.collect())
np.array(rdd.collect()).nbytes
在我那台几年前的电脑上大约需要0.01秒,内存大约为5.5MB。
如果数据要大得多,排序将是一个限制因素,因此与其获得确切的值,不如在本地进行采样、收集和计算。但如果你真的想用星火,像这样的东西应该能起到作用(如果我没有搞砸任何事情的话):from numpy import floor
import time
def quantile(rdd, p, sample=None, seed=None):
"""Compute a quantile of order p ∈ [0, 1]
:rdd a numeric rdd
:p quantile(between 0 and 1)
:sample fraction of and rdd to use. If not provided we use a whole dataset
:seed random number generator seed to be used with sample
"""
assert 0 <= p <= 1
assert sample is None or 0 < sample <= 1
seed = seed if seed is not None else time.time()
rdd = rdd if sample is None else rdd.sample(False, sample, seed)
rddSortedWithIndex = (rdd.
sortBy(lambda x: x).
zipWithIndex().
map(lambda (x, i): (i, x)).
cache())
n = rddSortedWithIndex.count()
h = (n - 1) * p
rddX, rddXPlusOne = (
rddSortedWithIndex.lookup(x)[0]
for x in int(floor(h)) + np.array([0L, 1L]))
return rddX + (h - floor(h)) * (rddXPlusOne - rddX)
还有一些测试:np.median(rdd.collect()), quantile(rdd, 0.5)
## (500184.5, 500184.5)
np.percentile(rdd.collect(), 25), quantile(rdd, 0.25)
## (250506.75, 250506.75)
np.percentile(rdd.collect(), 75), quantile(rdd, 0.75)
(750069.25, 750069.25)
最后让我们定义中值:from functools import partial
median = partial(quantile, p=0.5)
到目前为止还不错,但在没有任何网络通信的情况下,本地模式需要4.66秒。也许有办法改善这一点,但为什么还要费心呢?
与语言无关(Hive UDAF):
如果使用HiveContext,也可以使用配置单元UDAFs。积分值:rdd.map(lambda x: (float(x), )).toDF(["x"]).registerTempTable("df")
sqlContext.sql("SELECT percentile_approx(x, 0.5) FROM df")
连续值:sqlContext.sql("SELECT percentile(x, 0.5) FROM df")
在percentile_approx中,可以传递一个额外的参数,该参数确定要使用的记录数。