GEE 案例:利用多源遥感数据计算并预测指定森林区域的碳储量及RMSE

目录

GEE 案例:利用多源遥感数据计算并预测指定森林区域的碳储量及RMSE

简介

数据

波段

函数

mode()

Arguments:

Returns: Image

ee.Reducer.robustLinearRegression(numX, numY, beta)

Arguments:

Returns: Reducer

代码

结果


GEE 案例:利用多源遥感数据计算并预测指定森林区域的碳储量及RMSE

简介

WCMC/biomass_carbon_density/v1_0数据是由世界自然保护联盟(WCMC)开发和提供的数据集,用于估算全球各地生物量碳密度。这个数据集提供了全球范围内森林和其他生态系统的生物量碳密度的信息。

生物量碳密度是指单位面积上的生物量中的碳含量。它是评估生态系统中的碳储量和碳吸收能力的重要指标。生物量碳密度可以用于估算碳排放和吸收量,以及评估森林和其他生态系统对气候变化的响应和影响。

WCMC/biomass_carbon_density/v1_0数据提供了不同类型的生态系统中生物量碳密度的信息,包括热带雨林、温带森林、草原、沼泽等。数据通过采集和整合来自不同的研究和监测项目的数据,使用先进的遥感技术和建模方法进行处理和分析。

这个数据集可以用于各种研究和应用领域,例如气候变化研究、生态系统绩效评估、碳交易和碳补偿项目等。使用者可以通过查询或者下载数据集来获取特定地区和生态系统类型的生物量碳密度信息。

需要注意的是,WCMC/biomass_carbon_density/v1_0数据是基于模型估算和遥感观测的结果,具有一定的不确定性。因此,在使用数据时需要注意数据的可靠性和适用性,并结合其他数据和信息进行综合分析和解释。

### 利用遥感数据估算森林储量的技术与方法 #### 方法概述 森林储量估算是生态学研究中的一个重要领域,其核心在于通过种手段获取森林生物量的相关参数,将其转化为储量遥感数据融合技术能够有效提升估算精度和空间分辨率。这种方法通常涉及以下几个方面: 1. **遥感数据的选择与处理** 遥感数据包括光学遥感、雷达遥感以及高光谱遥感等。这些数据具有不同的波段范围和时空分辨率,适用于不同场景下的森林监测。例如,Landsat系列卫星提供长期连续的地表观测记录,而Sentinel-1雷达数据则能够在云层遮挡的情况下获取地表信息[^4]。 2. **特征参量提取** 特征参量是指从遥感影像中提取的关键变量,用于描述森林结构及其生物量特性。常见的特征参量包括归一化植被指数(NDVI)、叶面积指数(LAI)、冠层高度模型(CHM),以及其他基于纹理分析的结果。通过对这些参量的重要性与敏感性进行分析,可以选择最适于目标区域的组合方式[^1]。 3. **遥感回归模型构建** 基于机器学习或统计学方法建立的回归模型是连接遥感特征参量与实际测量值的重要桥梁。常用的建模方法有随机森林(Random Forests, RF)、支持向量机(Support Vector Machines, SVM)和支持向量回归(SVR)[^5]。这类模型可以通过训练样本集校准,从而提高对未知区域储量预测的能力。 4. **误差评估与验证** 使用独立验证数据集来评价模型性能是非常必要的环节之一。均方根误差(Root Mean Square Error, RMSE)常被用来衡量估计值与真实值之间的差异程度;决定系数(Coefficient of Determination, R²)反映了自变量解释因变量变异性的比例大小。此外还需注意不确定性来可能来自于传感器本身局限性或者地面调查采样偏差等方面的影响因素考虑进去。 #### 技术流程实例说明 以红树林覆盖变化监测为例展示具体操作步骤如下所示: ```python import ee ee.Initialize() # 定义感兴趣区(AOI) aoi = ee.Geometry.Rectangle([longitude_min, latitude_min, longitude_max, latitude_max]) # 加载哨兵一号SAR图像集合 sentinel1_collection = (ee.ImageCollection('COPERNICUS/S1_GRD') .filterBounds(aoi) .filterDate('start_date', 'end_date')) # 计算后向散射强度平均值作为输入特征之一 backscatter_mean = sentinel1_collection.mean().select(['VV','VH']) # 同理加载其他辅助数据如MODIS NDVI产品等... modis_ndvi = ee.ImageCollection("MODIS/006/MOD13Q1").mean().clip(aoi) # 将所有准备好的图层堆叠起来形成最终训练样本矩阵X feature_stack = ee.Image.cat([backscatter_mean, modis_ndvi]).rename(['bands_names']) ``` 上述代码片段展示了如何利用Google Earth Engine(GEE)平台集成不同类型遥感资料的过程。值得注意的是,在实际应用过程中还需要针对特定需求调整相应参数设置以便获得最佳效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值