动点四边形周长最短_动点与最值1:将军饮马(1)

这篇内容探讨了几何优化问题,包括寻找使PA+PB达到最小值的点P,涉及点在直线两侧或同侧的情况。同时,研究了在多条直线上寻找点P和Q以最小化PA+PQ+QB的路径,考虑了点的位置关系。此外,还讨论了如何在直线m上找到点P,使得PA+PB最短,以及在给定条件下的四边形周长最短问题。这些问题的解决方案利用了平移和对称性质,以及最短距离的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一)、已知两个定点:

1、在一条直线m上,求一点P,使PA+PB最小;

(1)点A、B在直线m两侧:

                                5f6716ae1ebb9ac2ba3da5e6b2d5b38d.png

415542d73ecaf48ba30a0c042080fdd3.gif

(2)点A、B在直线同侧:

5f99bdee6ed5979cfc657cf77ff3301f.png

da32e5a89d53895dc4155dbe98aec752.gif

                               B、B’ 是关于直线m的对称点。

2在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。

(1)两个点都在直线外侧:

86fca538572d361f5131b9963e789977.png

a804c9e0ebfc96016c9fabbbaa86ce9d.gif

(2)一个点在内侧,一个点在外侧:

02d6a0fb447a608e1c9fb5bb7feaabe9.png

5d8d9124f0568d4ed3cd647a7f2710a3.gif

(3)两个点都在内侧:

71e2fcb498962371e87e4ef9084a834c.png

585326b3fbb6c15aef0a082ad1b94cbb.gif

(4)、已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短.

7c7575ced1ac17669fac38d71a415462.png

13e040e424efa04ed5f8900e05234399.gif

3.点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)

577ede3105e051fa0555c02ef6197deb.png

cb0648a797240b181a9bb682c49cf0e0.gif

4.已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。(原理用平移知识解)

(1)点A、B在直线m两侧:

c2af6ec9f533a653cff82d88860050db.png

e2667d63553c7f07cce001f5a57bdb6a.gif

(2)点A、B在直线m同侧:

cd4e363878a9e8def38d379a9c84c66e.png

f4e8c368ec85331b400cefc77deb205c.gif

  (4)如图,AB是2个定点,一个定长的C,在直线上取一个点P和Q,使得PQ等于定长C(P在Q的左边),使得PA+PQ+QB的和最小。

795aec5e14f763676d79c6206cdf46e5.png

28b2b2579f32f845706bb9ad4fe1b14e.gif

过点A找一条与直线平行的线段,使得线段与C等长。

(5)如图,AB两个村庄之间有一条河,要在河上架一座桥,桥的方向与河堤垂直,桥架何处才能使得A到B的距离最短?

aff976b2359469dcfecb9cefc6e30c6a.png

be990711d8db12dafd4050942f611602.gif

         从点A作河边的垂线段,长度等于河宽即可

5.   如图,点A,B的距离是4,在一条直线上,求一点P,使|PA-PB|最大;最小呢?

6046bb84008f5b704631eff0f8ab7676.png

cfe7d77319fb0ca083a669dca8d4559a.gif

三角形的两边差小 于第三边,当3点成一线的时候,差等于第三边,最大为4,最小为0,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值