本文参考的论文和博客如下:
https://arxiv.org/pdf/1609.04747.pdfarxiv.org 深度学习--优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam) - 郭耀华 - 博客园www.cnblogs.com
第一部分:
总的来说,梯度优化算法被分为三种形式:
ps:η为learning rate, 带下标的x、y为样本和对应标签
1:BGD( Batch gradient descent) 批量梯度下降
顾名思义, Batch gradient descent 将计算在参数θ下整个数据据的损失,并将该损失应用于梯度更新。换句话说,我们需要计算整个数据集的梯度仅仅只用来进行一次更新,显而易见,BGD这种方法十分缓慢,且对于无法一次性加载进内存的数据集时不适宜的,且无法投放新的数据对模型进行在线更新。
公式如下:

本文对比了三种梯度优化算法:批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)。BGD计算整个数据集的梯度,适合小数据集;SGD每次更新基于单个样本,快速但可能震荡;MBGD取两者的平衡,使用小批量数据更新,收敛平滑但需谨慎设置学习率。
最低0.47元/天 解锁文章
2560

被折叠的 条评论
为什么被折叠?



