迁移到其他机器_了解因果关系是机器学习的下一个挑战

MILA / ETH Zurich / Max Planck智能系统研究所

导 入

知名深度学习科学家、图灵奖获得者Yoshua Bengio在2019年接受IEEE Spectrum采访时表示:“因果关系对于机器学习的下一步发展非常重要。”如今,AI已经真正从静态数据集的深度学习中获得了处理有关联性的和涉及到关系的任务的能力。但是,神经网络却不能解释因果关系,也不能解释为什么存在这些关联性和关系。AI也不擅长处理需要想象力、推理和计划的任务。这些导致AI不能泛化自己的学习并将技能迁移到另一个相关环境。

Yoshua Bengio

概 述

一篇关于CausalWorld的论文(可作为预印本)描述了在模拟机器人操纵环境中使用TriFinge(一个开源机器人平台)的基准。CausalWorld的主要目的是加速因果结构的研究并使用该模拟环境进行迁移学习。AI在这种环境中学到的技能可能能够迁移到现实世界中。人们可通过观察儿童如何玩积木和学习建造复杂结构为机器人特工分配推、叠、放置等任务。而且,虚拟环境中设置了大量参数,例如块的重量、形状和外观以及机器人本身,用户可以对任意点进行干预来评估机器人的泛化能力。

核心内容

在研究中,研究人员制定了三种不同的课程,为机器人提供了从简单到极具挑战性的许多任务。第一种没有环境变化;第二种对单个变量进行了更改;第三种允许环境中所有变量完全随机化。研究人员发现,课程越复杂,机器人将技能迁移到新条件上的能力就越弱。

研究的贡献者之一FrederikTräuble指出:“如果我们继续拓展实验范围之外的培训和网络架构,那么当前的方法就可能能够应用到我们在CausalWorld上搭建的更多的块堆叠环境。” Träuble还说:“事实上,有趣的是,人类可以更快,更普遍地进行泛化,并且不需要大量的经验,我们可以从某些环境共同的基本规则中学习和使用这些技能,这样能更好地推广到其他我们不熟悉的环境“。

另一方面,标准的神经网络需要在无数环境中进行大量的训练才能做到这一点。Träuble说:“学习这些基本规则或因果机制并加以利用的模型架构或方法能帮助机器学习克服这些挑战。”

Ahmed和Träuble说,CausalWorld的评估协议比以前的研究更具通用性,因为它可以“分解”泛化能力。换句话说,用户可以自由干预环境中的大量变量,得出特工可以泛化什么,不可以泛化什么的系统性结论。他们还说,研究人员的下一个挑战是使用CausalWorld中的工具来构建更通用的系统。

展 望

AI执行某些任务的能力令人惊叹,但Yoshua Bengio在2019年曾说,如今的深度学习并不比两岁的孩子聪明。神经网络进行大规模并行处理的能力为我们提供了计算机视觉、翻译和存储方面的突破,但现在的研究正转向开发新的深层架构和培训框架,以应对诸如推理、计划、捕获因果关系的任务,并获得系统性泛化能力。Bengio说:“我相信这仅仅是大脑灵感计算的另一种风格的开始,而且我们有很多入门工具可用”。

总 结

本文提出了因果关系是人工智能的下一个挑战,并且使用了关于CausalWorld评估的论文作为论证——课程越复杂,机器人将技能迁移到新条件上的能力就越弱。但是人们可以通过自由干预环境中的大量变量来得出什么可以泛化和什么不能泛化的结论。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值