级数求和的八个公式_在家学|幂级数和函数的求法;将函数展开为幂级数

1.幂级数和函数的求法

解题思路如下:

(1)

(2)

(3)由已知幂级数建立关于和函数的微分方程求解;

(4)利用幂级数下标变换求和函数;

(5)若幂级数由函数解析式给出,利用函数展开为幂级数和展开式的唯一性求解.

典型例题

1.求幂级数的和函数及其极值.

「分析」先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1.求出和函数后,再按通常方法求极值.

「解析」

上式两边从0到积分,得

由得

令,求得唯一驻点.

由于

可见在处取得极大值,且极大值为

「注意」求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.

2.设数列满足,,证明在时,级数收敛,并求其和函数.

「解析」是正项严格单增数列,且有,.

设,则 .于是

因在收敛,由比较法知在,即绝对收敛.

移项得

2.将函数展开为幂级数

需要记住常见函数的幂级数展开式:

典型例题

1.设

将展开成的幂级数,并求.

「分析」直接展开有困难,但是很容易展开,可以先展开其导数再逐项积分得到的展开式,然后再约去因子,再乘上化简即可.同时要注意记住常见函数的幂级数展开式.

「解析」在两端取积分得到:

又此级数在时均收敛,且在处连续,所以在终点和处均成立,有收敛域

两边同乘,得 又当时,上式满足,因此: 令,则有

因此

2.将函数展开成的幂级数.

「解析」用分解法转化为求的展开式,而这是已知的.

由于

因此

3.将函数展开成的幂级数.

「解析」对函数做分解,可得

有收敛域为

根据的Taylor展开式

所以有

往期回顾

  1. 在家学|2019-2020第二学期高等数学期末考试练习题

  2. 在家学|全微分的定义,可微与极限存在、连续性的关系及方向导数

  3. 在家学|曲面切平面存在的条件, 曲线的切线

  4. 在家学|多元函数的极值,最值和条件极值

  5. 在家学|隐函数、多元复合函数求导法则

  6. 在家学|累次积分与重积分的计算

  7. 在家学|第一类曲线积分与第二类曲线积分的计算

  8. 在家学|第一类曲面积分与第二类曲面积分的计算

  9. 在家学|各积分的对称性

  10. 在家学|格林公式、高斯公式、斯托克斯公式

  11. 在家学|全微分方程的通解

  12. 在家学|数项级数的敛散性判别; 条件收敛、绝对收敛

  13. 在家学|幂级数的收敛半径, 收敛区间, 收敛域

- END -

资料来源:北洋数学研究社·学研部

04d20756d60cbd681ce8c47b62a04797.png

mworks是一个用于数计算和数据分析的软件包,它可以帮助用户进行代数运算、求解方程、绘图等多种数任务。要求解幂级数的和函数,通常需要将幂级数表示为一个表达式,然后利用mworks的功能进行求和计算。 具体步骤可以大致分为以下几个步骤: 1. 首先,你需要确定幂级数的每一项的具体形式,例如,如果是形如 a_0 + a_1*x + a_2*x^2 + ... 的幂级数,你需要明确系数 a_0, a_1, a_2, ... 的值。 2. 在mworks中,你可以直接输入这个级数表达式。例如,如果你已经知道系数,可以直接在mworks中以数组形式定义系数,然后通过幂次函数构建出级数。 3. 利用mworks的求和函数或者直接进行运算,计算给定某个范围内x的值对应的级数和。如果级数是收敛的,那么随着项数的增加,求和的结果会越来越接近于幂级数对应的函数值。 这里提供一个假想的mworks代码示例,假设我们要求解的幂级数是 e^x = 1 + x/1! + x^2/2! + x^3/3! + ...,使用mworks的语法可能类似于以下方式: ```mworks // 定义系数数组 coefficients = [1, 1, 1/2!, 1/3!, 1/4!, ...]; // 构建幂级数函数 sum_function = SeriesSum(coefficients, x); // 计算特定点的和 x_value = 1; // 例如在x=1处 sum_at_x = sum_function(x_value); ``` 请注意,上面的代码是假想的,并不是真实有效的mworks代码。实际使用时需要参考mworks的官方文档来获取正确的语法和函数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值