1.幂级数和函数的求法
解题思路如下:(1)
(2)
(3)由已知幂级数建立关于和函数的微分方程求解;
(4)利用幂级数下标变换求和函数;
(5)若幂级数由函数解析式给出,利用函数展开为幂级数和展开式的唯一性求解.
典型例题
1.求幂级数的和函数及其极值.「分析」先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1.求出和函数后,再按通常方法求极值.
「解析」
上式两边从0到积分,得
由得
令,求得唯一驻点.
由于可见在处取得极大值,且极大值为
「注意」求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.
2.设数列满足,,证明在时,级数收敛,并求其和函数.「解析」是正项严格单增数列,且有,.
设,则 .于是
因在收敛,由比较法知在,即绝对收敛.移项得
2.将函数展开为幂级数
需要记住常见函数的幂级数展开式:典型例题
1.设将展开成的幂级数,并求.
「分析」直接展开有困难,但是很容易展开,可以先展开其导数再逐项积分得到的展开式,然后再约去因子,再乘上化简即可.同时要注意记住常见函数的幂级数展开式.
「解析」在两端取积分得到:
又此级数在时均收敛,且在处连续,所以在终点和处均成立,有收敛域
两边同乘,得 又当时,上式满足,因此: 令,则有因此
2.将函数展开成的幂级数.「解析」用分解法转化为求的展开式,而这是已知的.
由于因此
3.将函数展开成的幂级数.「解析」对函数做分解,可得
有收敛域为
根据的Taylor展开式则
所以有
往期回顾
在家学|2019-2020第二学期高等数学期末考试练习题
在家学|全微分的定义,可微与极限存在、连续性的关系及方向导数
在家学|曲面切平面存在的条件, 曲线的切线
在家学|多元函数的极值,最值和条件极值
在家学|隐函数、多元复合函数求导法则
在家学|累次积分与重积分的计算
在家学|第一类曲线积分与第二类曲线积分的计算
在家学|第一类曲面积分与第二类曲面积分的计算
在家学|各积分的对称性
在家学|格林公式、高斯公式、斯托克斯公式
在家学|全微分方程的通解
在家学|数项级数的敛散性判别; 条件收敛、绝对收敛
在家学|幂级数的收敛半径, 收敛区间, 收敛域
资料来源:北洋数学研究社·学研部