使用autopct关键字
我们知道显示的百分比乘以所有实际值的总和必须是实际值,我们可以将其定义为函数,并使用autopct关键字将此函数提供给plt.pie.
import matplotlib.pyplot as plt
import numpy
labels = 'Frogs', 'Hogs', 'Dogs'
sizes = numpy.array([5860, 677, 3200])
colors = ['yellowgreen', 'gold', 'lightskyblue']
def absolute_value(val):
a = numpy.round(val/100.*sizes.sum(), 0)
return a
plt.pie(sizes, labels=labels, colors=colors,
autopct=absolute_value, shadow=True)
plt.axis('equal')
plt.show()
必须小心,因为计算涉及一些错误,因此提供的值仅精确到一些小数位.
更高级的可能是以下函数,它通过比较计算值和输入数组之间的差异来尝试从输入数组中获取原始值.该方法不存在不准确的问题,但依赖于彼此充分不同的输入值.
def absolute_value2(val):
a = sizes[ numpy.abs(sizes - val/100.*sizes.sum()).argmin() ]
return a
创建饼图后更改文本
另一种选择是首先让饼图用百分比值绘制,然后替换它们.为此,可以存储plt.pie()返回的autopct标签,并在其上循环以使用原始数组中的值替换文本.注意,plt.pie()只返回三个参数,最后一个是感兴趣的标签,当提供autopct关键字时,我们在这里将它设置为空字符串.
labels = 'Frogs', 'Hogs', 'Dogs'
sizes = numpy.array([5860, 677, 3200])
colors = ['yellowgreen', 'gold', 'lightskyblue']
p, tx, autotexts = plt.pie(sizes, labels=labels, colors=colors,
autopct="", shadow=True)
for i, a in enumerate(autotexts):
a.set_text("{}".format(sizes[i]))
plt.axis('equal')
plt.show()