python datasets 下载_使用python+sklearn实现在小型数据集上比较不同的层次链接方法...

注意:单击此处https://urlify.cn/NV3Erq下载完整的示例代码,或通过Binder在浏览器中运行此示例

此示例显示了在二维模式下的数据集上层次聚类(hierarchical clustering)的不同链接方法的特征。 主要观察到的有:
  • 单链接的速度很快,并且可以在非球形数据上表现良好,但是在存在噪声的情况下,效果表现较差。
  • 平均链接和完全链接在分离干净的球状上表现良好,但在其他方面却有不同的结果。
  • Ward是处理有噪声数据的最有效方法。
尽管这些示例给出了有关算法的一些信息,但这种信息可能不适用于非常高维的数据。
print(__doc__)import timeimport warningsimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import cluster, datasetsfrom sklearn.preprocessing import StandardScalerfrom itertools import cycle, islicenp.random.seed(0)
生成数据集:我们选择足够大的样本数量以查看算法的可扩展性,但又不能设置太大,以避免运行时间太长。
n_samples = 1500noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,                                      noise=.05)noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)no_structure = np.random.rand(n_samples, 2), None# 各向异性(Anisotropicly)分布的数据random_state = 170X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)transformation = [[0.6, -0.6], [-0.4, 0.8]]X_aniso = np.dot(X, transformation)aniso = (X_aniso, y)# 具有变化的斑点(blobs)varied = datasets.make_blobs(n_samples=n_samples,                             cluster_std=[1.0, 2.5, 0.5],                             random_state=random_state)
运行聚类并绘图
# 设置聚类参数plt.figure(figsize=(9 * 1.3 + 2, 14.5))plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,                    hspace=.01)plot_num = 1default_base = {'n_neighbors': 10,                'n_clusters': 3}datasets = [    (noisy_circles, {'n_clusters': 2}),    (noisy_moons, {'n_clusters': 2}),    (varied, {'n_neighbors': 2}),    (aniso, {'n_neighbors': 2}),    (blobs, {}),    (no_structure, {})]for i_dataset, (dataset, algo_params) in enumerate(datasets):    # 使用数据集特定的值更新参数    params = default_base.copy()    params.update(algo_params)    X, y = dataset    # 标准化数据集,以便更轻松地选择参数    X = StandardScaler().fit_transform(X)    # ============    # 创建聚类对象    # ============    ward = cluster.AgglomerativeClustering(        n_clusters=params['n_clusters'], linkage='ward')    complete = cluster.AgglomerativeClustering(        n_clusters=params['n_clusters'], linkage='complete')    average = cluster.AgglomerativeClustering(        n_clusters=params['n_clusters'], linkage='average')    single = cluster.AgglomerativeClustering(        n_clusters=params['n_clusters'], linkage='single')    clustering_algorithms = (        ('Single Linkage', single),        ('Average Linkage', average),        ('Complete Linkage', complete),        ('Ward Linkage', ward),    )    for name, algorithm in clustering_algorithms:        t0 = time.time()        # 捕获与kneighbors_graph有关的警告        with warnings.catch_warnings():            warnings.filterwarnings(                "ignore",                message="the number of connected components of the " +                "connectivity matrix is [0-9]{1,2}" +                " > 1. Completing it to avoid stopping the tree early.",                category=UserWarning)            algorithm.fit(X)        t1 = time.time()        if hasattr(algorithm, 'labels_'):            y_pred = algorithm.labels_.astype(np.int)        else:            y_pred = algorithm.predict(X)        plt.subplot(len(datasets), len(clustering_algorithms), plot_num)        if i_dataset == 0:            plt.title(name, size=18)        colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',                                             '#f781bf', '#a65628', '#984ea3',                                             '#999999', '#e41a1c', '#dede00']),                                      int(max(y_pred) + 1))))        plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])        plt.xlim(-2.5, 2.5)        plt.ylim(-2.5, 2.5)        plt.xticks(())        plt.yticks(())        plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),                 transform=plt.gca().transAxes, size=15,                 horizontalalignment='right')        plot_num += 1plt.show()
4dadd6ba73e33818ae1418fb317fb10c.png
sphx_glr_plot_linkage_comparison_001
脚本的总运行时间:(0分钟2.983秒) 估计的内存使用量: 8 MB

2c432b54b32dfe99f48d5be65fe51cc2.png

下载Python源代码: plot_linkage_comparison.py 下载Jupyter notebook源代码: plot_linkage_comparison.ipynb 由Sphinx-Gallery生成的画廊 ‍

文壹由“伴编辑器”提供技术支持

☆☆☆为方便大家查阅,小编已将scikit-learn学习路线专栏 文章统一整理到公众号底部菜单栏,同步更新中,关注公众号,点击左下方“系列文章”,如图:

12c198d8a4204d420c18d5b521638433.png

欢迎大家和我一起沿着scikit-learn文档这条路线,一起巩固机器学习算法基础。(添加微信:mthler备注:sklearn学习,一起进【sklearn机器学习进步群】开启打怪升级的学习之旅。)

95fb7504632c034c47842287570b69a9.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Stacking是一种集成学习方法,可以将多个模型的预测结果结合起来,得到更好的预测效果。在使用Python和scikit-learn实现Stacking方法时,需要进行以下步骤: 1. 导入必要的数据集。 ```python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score, KFold from sklearn.model_selection import GridSearchCV from mlxtend.classifier import StackingClassifier iris = load_iris() X, y = iris.data[:, 1:3], iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) ``` 2. 定义基本模型和元模型。 ```python clf1 = KNeighborsClassifier(n_neighbors=3) clf2 = DecisionTreeClassifier() clf3 = RandomForestClassifier(n_estimators=100) clf4 = SVC(kernel='linear', probability=True) lr = LogisticRegression() ``` 3. 定义Stacking模型,并进行交叉验证。 ```python sclf = StackingClassifier(classifiers=[clf1, clf2, clf3, clf4], meta_classifier=lr) kfold = KFold(n_splits=10, shuffle=True, random_state=42) for clf, label in zip([clf1, clf2, clf3, clf4, sclf], ['KNN', 'Decision Tree', 'Random Forest', 'SVM', 'StackingClassifier']): scores = cross_val_score(clf, X, y, cv=kfold, scoring='accuracy') print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label)) ``` 4. 对Stacking模型进行调参。 ```python params = {'kneighborsclassifier__n_neighbors': [1, 3, 5], 'decisiontreeclassifier__max_depth': [1, 2], 'randomforestclassifier__max_depth': [1, 2], 'meta-logisticregression__C': [0.1, 1.0, 10.0]} grid = GridSearchCV(estimator=sclf, param_grid=params, cv=kfold, refit=True) grid.fit(X_train, y_train) print("Best parameters set found on development set:") print(grid.best_params_) print("Grid scores on development set:") means = grid.cv_results_['mean_test_score'] stds = grid.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, grid.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) ``` 5. 计算Stacking模型在测试集上的准确率。 ```python y_pred = grid.predict(X_test) print('Accuracy: %.2f' % accuracy_score(y_test, y_pred)) ``` 通过以上步骤,我们就可以使用Python和scikit-learn实现Stacking方法来组合预测了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值