python pandas有什么用_python之Numpy和Pandas的使用介绍

最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,下面这篇文章主要给大家介绍了关于python学习教程之Numpy和Pandas使用的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴。

前言

本文主要给大家介绍了关于python中Numpy和Pandas使用的相关资料,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。

它们是什么?

NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

Pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

List、Numpy与Pandas

Numpy与List

相同之处:都可以用下标访问元素,例如a[0]

都可以切片访问,例如a[1:3]

都可以使用for循环进行遍历

不同之处:Numpy之中每个元素类型必须相同;而List中可以混合多个类型元素

Numpy使用更方便,封装了许多函数,例如mean、std、sum、min、max等

Numpy可以是多维数组

Numpy用C实现,操作起来速度更快

Pandas与Numpy

相同之处:访问元素一样,可以使用下标,也可以使用切片访问

可以使用For循环遍历

有很多方便的函数,例如mean、std、sum、min、max等

可以进行向量运算

用C实现,速度更快

不同之处:Pandas拥有Numpy一些没有的方法,例如describe函数。其主要区别是:Numpy就像增强版的List,而Pandas就像列表和字典的合集,Pandas有索引。

Numpy使用

1、基本操作

import numpy as np

#创建Numpy

p1 = np.array([1, 2, 3])

print p1

print p1.dtype

[1 2 3]

int64

#求平均值

print p1.mean()

2.0

#求标准差

print p1.std()

0.816496580928

#求和、求最大值、求最小值

print p1.sum()

print p1.max()

print p1.min()

6

3

1

#求最大值所在位置

print p1.argmax()

2

2、向量运算

p1 = np.array([1, 2, 3])

p2 = np.array([2, 5, 7])

#向量相加,各个元素相加

print p1 + p2

[ 3 7 10]

#向量乘以1个常数

print p1 * 2

[2 4 6]

#向量相减

print p1 - p2

[-1 -3 -4]

#向量相乘,各个元素之间做运算

print p1 * p2

[ 2 10 21]

#向量与一个常数比较

print p1 > 2

[False False True]

3、索引数组

首先,看下面一幅图,理解下

11a8912a82f0a3bf6298523238358e99-0.jpg

然后,咱们用代码实现看下

a = np.array([1, 2, 3, 4, 5])

print a

[1 2 3 4 5]

b = a > 2

print b

[False False True True True]

print a[b]

[3 4 5]

a[b]中,只会保留a中所对应的b位置为True的元素

4、原地与非原地

咱们先来看一组运算:

a = np.array([1, 2, 3, 4])

b = a

a += np.array([1, 1, 1, 1])

print b

[2 3 4 5]

a = np.array([1, 2, 3, 4])

b = a

a = a + np.array([1, 1, 1, 1])

print b

[1 2 3 4]

从上面结果可以看出来,+=改变了原来数组,而+没有。这是因为:+=:它是原地计算,不会创建一个新的数组,在原始数组中更改元素

+:它是非原地计算,会创建一个新的数组,不会修改原始数组中的元素

5、Numpy中的切片与List的切片

l1 = [1, 2, 3, 5]

l2 = l1[0:2]

l2[0] = 5

print l2

print l1

[5, 2]

[1, 2, 3, 5]

p1 = np.array([1, 2, 3, 5])

p2 = p1[0:2]

p2[0] = 5

print p1

print p2

[5 2 3 5]

[5 2]

从上可知,List中改变切片中的元素,不会影响原来的数组;而Numpy改变切片中的元素,原来的数组也跟着变了。这是因为:Numpy的切片编程不会创建一个新数组出来,当修改对应的切片也会更改原始的数组数据。这样的机制,可以让Numpy比原生数组操作更快,但编程时需要注意。

6、二维数组的操作

p1 = np.array([[1, 2, 3], [7, 8, 9], [2, 4, 5]])

#获取其中一维数组

print p1[0]

[1 2 3]

#获取其中一个元素,注意它可以是p1[0, 1],也可以p1[0][1]

print p1[0, 1]

print p1[0][1]

2

2

#求和是求所有元素的和

print p1.sum()

41

[10 14 17]

但,当设置axis参数时,当设置为0时,是计算每一列的结果,然后返回一个一维数组;若是设置为1时,则是计算每一行的结果,然后返回一维数组。对于二维数组,Numpy中很多函数都可以设置axis参数。

#获取每一列的结果

print p1.sum(axis=0)

[10 14 17]

#获取每一行的结果

print p1.sum(axis=1)

[ 6 24 11]

#mean函数也可以设置axis

print p1.mean(axis=0)

[ 3.33333333 4.66666667 5.66666667]

Pandas使用

Pandas有两种结构,分别是Series和DataFrame。其中Series拥有Numpy的所有功能,可以认为是简单的一维数组;而DataFrame是将多个Series按列合并而成的二维数据结构,每一列单独取出来是一个Series。

咱们主要梳理下Numpy没有的功能:

1、简单基本使用

import pandas as pd

pd1 = pd.Series([1, 2, 3])

print pd1

0 1

1 2

2 3

dtype: int64

#也可以求和和标准偏差

print pd1.sum()

print pd1.std()

6

1.0

2、索引

(1)Series中的索引

p1 = pd.Series(

[1, 2, 3],

index = ['a', 'b', 'c']

)

print p1

a 1

b 2

c 3

dtype: int64

print p1['a']

(2)DataFrame数组

p1 = pd.DataFrame({

'name': ['Jack', 'Lucy', 'Coke'],

'age': [18, 19, 21]

})

print p1

age name

0 18 Jack

1 19 Lucy

2 21 Coke

#获取name一列

print p1['name']

0 Jack

1 Lucy

2 Coke

Name: name, dtype: object

#获取姓名的第一个

print p1['name'][0]

Jack

#使用p1[0]不能获取第一行,但是可以使用iloc

print p1.iloc[0]

age 18

name Jack

Name: 0, dtype: object

总结:获取一列使用p1[‘name']这种索引

获取一行使用p1.iloc[0]

3、apply使用

apply可以操作Pandas里面的元素,当库里面没用对应的方法时,可以通过apply来进行封装

def func(value):

return value * 3

pd1 = pd.Series([1, 2, 5])

print pd1.apply(func)

0 3

1 6

2 15

dtype: int64

同样可以在DataFrame上使用:

pd2 = pd.DataFrame({

'name': ['Jack', 'Lucy', 'Coke'],

'age': [18, 19, 21]

})

print pd2.apply(func)

age name

0 54 JackJackJack

1 57 LucyLucyLucy

2 63 CokeCokeCoke

4、axis参数

Pandas设置axis时,与Numpy有点区别:当设置axis为'columns'时,是计算每一行的值

当设置axis为'index'时,是计算每一列的值

pd2 = pd.DataFrame({

'weight': [120, 130, 150],

'age': [18, 19, 21]

})

0 138

1 149

2 171

dtype: int64

#计算每一行的值

print pd2.sum(axis='columns')

0 138

1 149

2 171

dtype: int64

#计算每一列的值

print pd2.sum(axis='index')

age 58

weight 400

dtype: int64

5、分组

pd2 = pd.DataFrame({

'name': ['Jack', 'Lucy', 'Coke', 'Pol', 'Tude'],

'age': [18, 19, 21, 21, 19]

})

#以年龄分组

print pd2.groupby('age').groups

{18: Int64Index([0], dtype='int64'), 19: Int64Index([1, 4], dtype='int64'), 21: Int64Index([2, 3], dtype='int64')}

6、向量运算

需要注意的是,索引数组相加时,对应的索引相加

pd1 = pd.Series(

[1, 2, 3],

index = ['a', 'b', 'c']

)

pd2 = pd.Series(

[1, 2, 3],

index = ['a', 'c', 'd']

)

print pd1 + pd2

a 2.0

b NaN

c 5.0

d NaN

dtype: float64

出现了NAN值,如果我们期望NAN不出现,如何处理?使用add函数,并设置fill_value参数

print pd1.add(pd2, fill_value=0)

a 2.0

b 2.0

c 5.0

d 3.0

dtype: float64

同样,它可以应用在Pandas的dataFrame中,只是需要注意列与行都要对应起来。

总结

这一周学习了优达学城上分析基础的课程,使用的是Numpy与Pandas。对于Numpy,以前在Tensorflow中用过,但是很不明白,这次学习之后,才知道那么简单,算是有一定的收获。

以上就是python之Numpy和Pandas的使用介绍的详细内容,更多请关注php中文网其它相关文章!

article_wechat2021.jpg?1111

本文原创发布php中文网,转载请注明出处,感谢您的尊重!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值