单个正态总体均值的区间估计_参数估计06---置信区间的求法--枢轴量法

本文详细介绍了单个正态总体均值的置信区间估计方法,包括利用枢轴量法来求解不同置信水平下的置信区间。通过选取合适的枢轴量,并依据Neyman原则优化区间长度。还提到了在总体分布未知但样本容量较大时,可借助中心极限定理进行近似估计。主要讨论了单个正态总体均值μ的区间估计,强调了总体分布形式对估计的影响。
摘要由CSDN通过智能技术生成

6070bef77089c93ba1d4a51c1b2ea4f8.png

二、置信区间的求法

问题:

设总体X的分布有未知参数

是一样本.如何给出θ的

(1) 置信水平为

的双侧置信区间?

(2) 置信水平为

的单侧置信下限?

(3) 置信水平为

的单侧置信上限?

方法:

(1)找一个随机变量G,使G分布已知

(2)找a<b,使

.因为要求
的区间估计,所以G应该是
和 样本
的函数.

(3)从

解出
,
就是置信度为
的双侧置信区间.

设总体

有概率密度(或分布律)
, 其中
是待估的未知参数.

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
单个正态总体方差已知时未知参数的置信区间需要用到t分布,枢轴量选取为样本平均数。 具体推导如下: 设总体为 $N(\mu,\sigma^2)$,样本量为 $n$,样本均值为 $\bar{x}$,总体方差已知为 $\sigma^2$。 由于样本均值 $\bar{x}$ 服从 $N(\mu,\frac{\sigma^2}{n})$,因此有: $$\frac{\bar{x}-\mu}{\sqrt{\frac{\sigma^2}{n}}}\sim N(0,1)$$ 将其转化为标准正态分布: $$\frac{\bar{x}-\mu}{\sqrt{\frac{\sigma^2}{n}}} \sim \mathcal{N}(0,1)$$ 根据标准正态分布的性质,可得: $$P(-z_{\frac{\alpha}{2}} \leq \frac{\bar{x}-\mu}{\sqrt{\frac{\sigma^2}{n}}} \leq z_{\frac{\alpha}{2}}) = 1-\alpha$$ 其中,$z_{\frac{\alpha}{2}}$ 表示标准正态分布累积分布函数在 $\frac{\alpha}{2}$ 处的值。 将 $\frac{\bar{x}-\mu}{\sqrt{\frac{\sigma^2}{n}}}$ 转化为 $t$ 分布,得: $$\frac{\bar{x}-\mu}{\sqrt{\frac{\sigma^2}{n}}} \sim t(n-1)$$ 同样根据 $t$ 分布的性质,有: $$P(-t_{n-1,\frac{\alpha}{2}} \leq \frac{\bar{x}-\mu}{\sqrt{\frac{\sigma^2}{n}}} \leq t_{n-1,\frac{\alpha}{2}}) = 1-\alpha$$ 其中,$t_{n-1,\frac{\alpha}{2}}$ 表示 $t$ 分布累积分布函数在 $\frac{\alpha}{2}$ 处、自由度为 $n-1$ 的值。 因此,单个正态总体方差已知时未知参数的置信区间为: $$(\bar{x}-t_{n-1,\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}, \bar{x}+t_{n-1,\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}})$$ 其中,$\bar{x}$ 表示样本均值,$n$ 表示样本容量,$\sigma$ 表示总体标准差,$\alpha$ 表示置信水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值