第四章 区间估计(2)
1.枢轴变量法概述
枢轴变量法的核心在于从点估计入手构造置信区间,将点估计T(X)T(\boldsymbol X)T(X)与参数θ\thetaθ复合在一起成为一个变量φ(T,θ)\varphi(T,\theta)φ(T,θ),要求它的表达式与未知参数θ\thetaθ有关,但是分布却与参数无关。由于枢轴变量的表达式与参数有关,因而不是统计量,只能说这是一种构造区间估计的方法。
具体的枢轴变量法步骤是:
- 找到一个待估参数μ\muμ的良好点估计T(X)T(\boldsymbol X)T(X);
- 构造出一个表达式与待估参数有关的函数φ(T,μ)\varphi(T,\mu)φ(T,μ),使得其分布与参数无关;
- 对给定0<α<10<\alpha<10<α<1,找到两个常数a,ba,ba,b使得Pμ(a≤φ(T,μ)≤b)=1−α\mathbf P_\mu(a\le\varphi(T,\mu)\le b)=1-\alphaPμ(a≤φ(T,μ)≤b)=1−α;
- 解不等式a≤φ(T,μ)≤ba\le \varphi(T,\mu)\le ba≤φ(T,μ)≤b,得到μ^1(X)≤μ≤μ^2(X)\hat \mu_1(\boldsymbol X)\le\mu\le\hat \mu_2(\boldsymbol X)μ^1(X)≤μ≤μ^2(X),这就是所需要的置信区间。
2.正态分布的枢轴变量法
对于单正态总体N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2),记Xˉ=1n∑i=1nXi,S2=1n−1∑i=1n(Xi−Xˉ)2\bar X=\frac1n\sum_{i=1}^nX_i,S^2=\frac1{n-1}\sum_{i=1}^n(X_i-\bar X)^2Xˉ=n1∑i=1nXi,S2=n−11∑i=1n(Xi−Xˉ)2,要求参数置信水平为1−α1-\alpha1−α的双侧置信区间。这里用upu_pup表示标准正态分布的上ppp分位数,tn(p)t_n(p)tn(p)表示tnt_ntn分布的上ppp分位数,用χn2(p)\chi^2_n(p)χn2(p)表示χn2\chi^2_nχn2分布的上ppp分位数。有以下这些情况:
-
σ2\sigma^2σ2已知,求μ\muμ:由于Xˉ∼N(μ,σ2/n)\bar X\sim N(\mu,\sigma^2/n)Xˉ∼N(μ,σ2/n),所以
n(Xˉ−μ)σ∼N(0,1)即[Xˉ−σnuα/2,Xˉ+σnuα/2] \frac{\sqrt n(\bar X-\mu)}{\sigma}\sim N(0,1)\\ 即[\bar X-\frac{\sigma}{\sqrt n}u_{\alpha/2},\bar X+\frac{\sigma}{\sqrt n}u_{\alpha/2}] σn(Xˉ−μ)∼N(0,1)即[Xˉ−nσuα/2,Xˉ+nσuα/2] -
σ2\sigma^2σ2未知,求μ\muμ:由于n(Xˉ−μ)σ∼N(0,1),(n−1)S2σ2∼χn−12\frac{\sqrt n(\bar X-\mu)}{\sigma}\sim N(0,1),\frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1}σn(Xˉ−μ)∼N(0,1),σ2(n−1)S2∼χn−12,所以
n(X−μ)S∼tn−1即[Xˉ−Sntn−1(α/2),Xˉ+Sntn−1(α/2)] \frac{\sqrt n(X-\mu)}{S}\sim t_{n-1}\\ 即[\bar X-\frac{S}{\sqrt n}t_{n-1}(\alpha/2),\bar X+\frac{S}{\sqrt n}t_{n-1}(\alpha/2)] Sn(X−μ)∼tn−1即[Xˉ−nStn−1(α/2),Xˉ+nStn−1(α/2)] -
μ\muμ已知,求σ2\sigma^2σ2:此时找到σ2\sigma^2σ2的无偏估计Sn2=1n∑i=1n(Xi−μ)2S_n^2=\frac1n\sum_{i=1}^n(X_i-\mu)^2Sn2=n1∑i=1n(Xi−μ)2,且nSn2σ2∼χn2\frac{nS_n^2}{\sigma^2}\sim \chi^2_nσ2nSn2∼χn2,所以
nSn2σ2∼χn2即[nSn2χn2(α/2),nSn2χn2(1−α/2)] \frac{nS_n^2}{\sigma^2}\sim \chi^2_n\\ 即[\frac{nS_n^2}{\chi^2_n(\alpha/2)},\frac{nS^2_n}{\chi^2_n(1-\alpha/2)}] σ2nSn2∼χn2即[χn2(α/2)nSn2,χn2(1−α/2)nSn2] -
μ\muμ未知,求σ2\sigma^2σ2:由于(n−1)S2σ2∼χn−12\frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1}σ2(n−1)S2∼χn−12,所以
(n−1)S2σ2∼χn−12即[(n−1)S2χn−12(α/2),(n−1)S2χn−12(1−α/2)] \frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1}\\ 即[\frac{(n-1)S^2}{\chi^2_{n-1}(\alpha/2)},\frac{(n-1)S^2}{\chi^2_{n-1}(1-\alpha/2)}] σ2(n−1)S2∼χn−12即[χn−12(α/2)(n−1)S2,χn−12(1−α/2)(n−1)S2]
以上两种情况,对于σ\sigmaσ直接将上下界开方即可。
对于双正态总体Xm∼N(a,σ12),Yn∼N(b,σ22)\boldsymbol X_m\sim N(a,\sigma_1^2),\boldsymbol Y_n\sim N(b,\sigma_2^2)Xm∼N(a,σ12),Yn∼N(b,σ22),且二者相互独立。记Xˉ=1m∑i=1nXi,Yˉ=1n∑j=1nYj,Sm2=1m−1∑i=1m(Xi−Xˉ)2,Sn2=1n−1∑j=1n(Yi−Yˉ)2\bar X=\frac1m\sum_{i=1}^n X_i,\bar Y=\frac1n\sum_{j=1}^nY_j,S_m^2=\frac1{m-1}\sum_{i=1}^m(X_i-\bar X)^2,S_n^2=\frac1{n-1}\sum_{j=1}^n(Y_i-\bar Y)^2Xˉ=m1∑i=1nXi,Yˉ=n1∑j=1nYj,Sm2=m−11∑i=1m(Xi−Xˉ)2,Sn2=n−11∑j=1n(Yi−Yˉ)2。有均值差和方差比两种可以估计的参数。
对于均值差b−ab-ab−a的估计,有以下几种情况:
-
m=nm=nm=n,即两组样本对称时,令Zi=Yi−XiZ_i=Y_i-X_iZi=Yi−Xi,有Zi∼N(b−a,σ12+σ22)Z_i\sim N(b-a,\sigma^2_1+\sigma_2^2)Zi∼N(b−a,σ12+σ22),转化为单变量均值估计问题。
-
σ12,σ22\sigma_1^2,\sigma_2^2σ12,σ22已知时,Yˉ−Xˉ∼N(b−a,σ12m+σ22n)\bar Y-\bar X\sim N(b-a,\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n})Yˉ−Xˉ∼N(b−a,mσ12+nσ22),标准化即可作为枢轴量。
-
当σ12=σ22=σ2\sigma_1^2=\sigma_2^2=\sigma^2σ12=σ22=σ2但未知时,取联合方差Sw2S_w^2Sw2为
Sw2=1m+n−2[∑i=1n(Xi−Xˉ)2+∑j=1n(Yi−Yˉ)2]Tw=(Yˉ−Xˉ)−(b−a)Twmnm+n∼tm+n−2 S_w^2=\frac1{m+n-2}\left[\sum_{i=1}^n(X_i-\bar X)^2+\sum_{j=1}^n (Y_i-\bar Y)^2\right]\\ T_w=\frac{(\bar Y-\bar X)-(b-a)}{T_w}\sqrt{\frac{mn}{m+n}}\sim t_{m+n-2} Sw2=m+n−21[i=1∑n(Xi−Xˉ)2+j=1∑n(Yi−Yˉ)2]Tw=Tw(Yˉ−Xˉ)−(b−a)m+nmn∼tm+n−2
可以取TwT_wTw作为枢轴量。 -
当σ12≠σ22\sigma_1^2\ne \sigma_2^2σ12=σ22均未知时,可使用大样本方法,取
U~=(Yˉ−Xˉ)−(b−a)S12/m+S22/n⟶LN(0,1) \tilde U=\frac{(\bar Y- \bar X)-(b-a)}{\sqrt{S_1^2/m+S_2^2/n}}\stackrel{\mathscr L}{\longrightarrow}N(0,1) U~=S12/m+S22/n(Yˉ−Xˉ)−(b−a)⟶LN(0,1)
小样本情形用到非中心ttt分布。
对于方差比σ12/σ22\sigma_1^2/\sigma_2^2σ12/σ22,有以下几种情况:
-
当a,ba,ba,b已知时,记Sa2=∑i=1m(Xi−a)2m,Sb2=∑j=1n(Yi−b)2nS_a^2=\frac{\sum_{i=1}^m (X_i-a)^2}{m},S_b^2=\frac{\sum_{j=1}^n (Y_i-b)^2}{n}Sa2=m∑i=1m(Xi−a)2,Sb2=n∑j=1n(Yi−b)2,则有mSa2/σ12∼χm2,nSb2/σ22∼χn2mS_a^2/\sigma_1^2\sim \chi_m^2,nS_b^2/\sigma_2^2\sim \chi^2_nmSa2/σ12∼χm2,nSb2/σ22∼χn2,于是
F=Sa2/σ12Sb2/σ22∼Fm,n F=\frac{S_a^2/\sigma_1^2}{S_b^2/\sigma_2^2}\sim F_{m,n} F=Sb2/σ22Sa2/σ12∼Fm,n
可取FFF作为枢轴量。 -
当a,ba,ba,b未知是,有(m−1)S12∼χm−12,(n−1)S22∼χn−12(m-1)S_1^2\sim \chi^2_{m-1},(n-1)S_2^2\sim \chi^2_{n-1}(m−1)S12∼χm−12,(n−1)S22∼χn−12,于是
F=S12/σ12S22/σ22∼Fm−1.n−1 F=\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}\sim F_{m-1.n-1} F=S22/σ22S12/σ12∼Fm−1.n−1
可取FFF作为枢轴量。
3.非正态分布的枢轴变量法
对于指数分布Exp(λ),f(x,λ)=λe−λxI(0,∞)(x)\text{Exp}(\lambda),f(x,\lambda)=\lambda e^{-\lambda x}I_{(0,\infty)(x)}Exp(λ),f(x,λ)=λe−λxI(0,∞)(x),由于Xˉ\bar XXˉ是其UMVUE且2λnXˉ∼χ2n22\lambda n\bar X\sim \chi_{2n}^22λnXˉ∼χ2n2,所以可取T=2λnXˉT=2\lambda n\bar XT=2λnXˉ为枢轴量。
对于分布U(0,θ)U(0,\theta)U(0,θ),n+1nX(n)\frac{n+1}nX_{(n)}nn+1X(n)是其UMVUE,Y=X(n)θY=\frac{X_{(n)}}{\theta}Y=θX(n)的概率密度为fY(y)=nyn−1I(0,1)(y)f_Y(y)=ny^{n-1}I_{(0,1)}(y)fY(y)=nyn−1I(0,1)(y),分布函数为FY(y)=ynI(0,1)(y)+I(1,∞)(y)F_Y(y)=y^nI_{(0,1)}(y)+I_{(1,\infty)}(y)FY(y)=ynI(0,1)(y)+I(1,∞)(y)。取它的倒数Z=1/YZ=1/YZ=1/Y,则
forz>1,FZ(z)=P(1≤1Y(n)≤z)=P(1z≤Y(n)≤1)=1−FY(1z)=1−z−nfZ(z)=FZ′(z)=nz−(n+1)I(1,∞)(z)
\begin{aligned}
for \quad z>1,F_Z(z)=&\mathbf P(1\le \frac{1}{Y_{(n)}}\le z)\\
=&\mathbf P(\frac1z\le Y_{(n)}\le1)\\
=&1-F_Y(\frac1z)\\
=&1-z^{-n}\\
f_Z(z)=&F'_Z(z)=nz^{-(n+1)}I_{(1,\infty)}(z)
\end{aligned}
forz>1,FZ(z)====fZ(z)=P(1≤Y(n)1≤z)P(z1≤Y(n)≤1)1−FY(z1)1−z−nFZ′(z)=nz−(n+1)I(1,∞)(z)
现确定1≤d1≤d2≤∞1\le d_1\le d_2\le \infty1≤d1≤d2≤∞,使得
Pθ(d1≤θT≤d2)=Pθ(d1T≤θ≤d2T)=∫d1d2nz−n−1dz=1d1n−1d2n=1−α
\begin{aligned}
&\mathbf P_\theta\left(d_1\le \frac\theta T\le d_2\right)\\
=&\mathbf P_\theta(d_1T\le \theta \le d_2T)\\
=&\int_{d_1}^{d_2}nz^{-n-1}dz\\
=&\frac1{d_1^n}-\frac1{d_2^n}=1-\alpha
\end{aligned}
===Pθ(d1≤Tθ≤d2)Pθ(d1T≤θ≤d2T)∫d1d2nz−n−1dzd1n1−d2n1=1−α
取d1=1,d2=1αnd_1=1,d_2=\frac1 {\sqrt[n]{\alpha}}d1=1,d2=nα1,反解得到置信区间为[T,Tαn][T,\frac T{\sqrt[n]{\alpha}}][T,nαT]。
按照大样本方法找未知参数的置信区间,有以下几个例子。
柯西分布C(θ)C(\theta)C(θ)的位置参数,密度函数为f(x,θ)=1π[1+(x−θ)2]f(x,\theta)=\frac1{\pi[1+(x-\theta)^2]}f(x,θ)=π[1+(x−θ)2]1。由于柯西分布没有均值,样本的中位数mnm_nmn反映总体的中位数,所以取mn−θm_n-\thetamn−θ作为枢轴量。在大样本情形下,有
2n(mu−θ)π⟶LN(0,1)
\frac{2\sqrt n(m_u-\theta)}{\pi}\stackrel{\mathscr L}{\longrightarrow }N(0,1)
π2n(mu−θ)⟶LN(0,1)
对于两点分布b(1,p)b(1,p)b(1,p)中抽取的样本X=(X1,⋯ ,Xn)\boldsymbol X=(X_1,\cdots,X_n)X=(X1,⋯,Xn),取Sn=∑i=1nXiS_n=\sum_{i=1}^nX_iSn=∑i=1nXi,有Sn∼b(n,p)S_n\sim b(n,p)Sn∼b(n,p)。在大样本情形下,有
Sn−npnp(1−p)=n(Xˉ−p)p(1−p)⟶LN(0,1)P(∣T∣≤uα/2)≈1−α
\frac{S_n -np}{\sqrt{np(1-p)}}=\frac{\sqrt n(\bar X-p)}{\sqrt {p(1-p)}}\stackrel{\mathscr L}{\longrightarrow }N(0,1)\\
\mathbf P(|T|\le u_{\alpha/2})\approx1-\alpha
np(1−p)Sn−np=p(1−p)n(Xˉ−p)⟶LN(0,1)P(∣T∣≤uα/2)≈1−α
要从枢轴量中解出统计量,记γ=uα/2,p^=Xˉ\gamma=u_{\alpha/2},\hat p=\bar Xγ=uα/2,p^=Xˉ,则
∣n(Xˉ−p)p(1−p)∣≤uα/2 ⟺ ∣n(p^−p)p(1−p)∣≤γ ⟺ (p^−p)2≤γ2p(1−p)n ⟺ p2(n+γ2)−p(2np^+γ2)+np^2≤0Δ=(2np^+γ2)2−4np^2(n+γ2)=γ2(γ2+4np^(1−p^))≥0
\begin{aligned}
&\left|\frac{\sqrt n(\bar X-p)}{\sqrt{p(1-p)}}\right|\le u_{\alpha/2}\\
\iff&\left|\frac{\sqrt n(\hat p-p)}{\sqrt{p(1-p)}}\right|\le\gamma\\
\iff&(\hat p-p)^2\le\frac{\gamma^2p(1-p)}{n}\\
\iff&p^2(n+\gamma^2)-p(2n\hat p+\gamma^2)+n\hat p^2\le0
\end{aligned}\\
\Delta=(2n\hat p+\gamma^2)^2-4n\hat p^2(n+\gamma^2)=\gamma^2(\gamma^2+4n\hat p(1-\hat p))\ge0
⟺⟺⟺∣∣∣∣∣p(1−p)n(Xˉ−p)∣∣∣∣∣≤uα/2∣∣∣∣∣p(1−p)n(p^−p)∣∣∣∣∣≤γ(p^−p)2≤nγ2p(1−p)p2(n+γ2)−p(2np^+γ2)+np^2≤0Δ=(2np^+γ2)2−4np^2(n+γ2)=γ2(γ2+4np^(1−p^))≥0
这就可以根据一元二次方程的解法解出两个正根。实际应用中,如果将分母的ppp直接换成p^\hat pp^则更为简洁,且依然有渐近正态性,即
n(p^−p)p^(1−p^)⟶LN(0,1)
\frac{\sqrt{n}(\hat p-p)}{\sqrt{\hat p(1-\hat p)}}\stackrel{\mathscr L}{\longrightarrow }N(0,1)
p^(1−p^)n(p^−p)⟶LN(0,1)
对于泊松分布P(λ),P(Xi=k)=λkn!e−λP(\lambda),P(X_i=k)=\frac{\lambda^k}{n!}e^{-\lambda }P(λ),P(Xi=k)=n!λke−λ,记Sn=∑i=1nXi∼P(nλ)S_n=\sum_{i=1}^n X_i\sim P(n\lambda )Sn=∑i=1nXi∼P(nλ),当nnn充分大时,有
Sn−nλnλ=n(Xˉ−λ)λ⟶LN(0,1)
\frac{S_n-n\lambda}{\sqrt{n\lambda}}=\frac{\sqrt{n}(\bar X-\lambda)}{\sqrt \lambda }\stackrel{\mathscr L}{\longrightarrow }N(0,1)
nλSn−nλ=λn(Xˉ−λ)⟶LN(0,1)
于是可以将其作为估计量,方法与两点分布类似。实际运用中,也可以采用与两点分布一样的简化方法,把分母中的λ\lambdaλ换成λ^=Xˉ\hat \lambda=\bar Xλ^=Xˉ,直接有
n(Xˉ−λ)λ^⟶LN(0,1)
\frac{\sqrt n(\bar X-\lambda)}{\sqrt {\hat \lambda }}\stackrel{\mathscr L}{\longrightarrow }N(0,1)
λ^n(Xˉ−λ)⟶LN(0,1)
区间估计与枢轴变量法
本文详细介绍了枢轴变量法在区间估计中的应用,包括正态分布、非正态分布下的参数估计,以及利用大样本方法进行置信区间的构建。通过具体案例,如指数分布、均匀分布、柯西分布等,展示了如何选取合适的枢轴变量来解决参数估计问题。
4825

被折叠的 条评论
为什么被折叠?



