11.第四章 区间估计(2)

第四章 区间估计(2)

1.枢轴变量法概述

枢轴变量法的核心在于从点估计入手构造置信区间,将点估计 T ( X ) T(\boldsymbol X) T(X)与参数 θ \theta θ复合在一起成为一个变量 φ ( T , θ ) \varphi(T,\theta) φ(T,θ),要求它的表达式与未知参数 θ \theta θ有关,但是分布却与参数无关。由于枢轴变量的表达式与参数有关,因而不是统计量,只能说这是一种构造区间估计的方法。

具体的枢轴变量法步骤是:

  1. 找到一个待估参数 μ \mu μ良好点估计 T ( X ) T(\boldsymbol X) T(X)
  2. 构造出一个表达式与待估参数有关的函数 φ ( T , μ ) \varphi(T,\mu) φ(T,μ),使得其分布与参数无关;
  3. 对给定 0 < α < 1 0<\alpha<1 0<α<1,找到两个常数 a , b a,b a,b使得 P μ ( a ≤ φ ( T , μ ) ≤ b ) = 1 − α \mathbf P_\mu(a\le\varphi(T,\mu)\le b)=1-\alpha Pμ(aφ(T,μ)b)=1α
  4. 解不等式 a ≤ φ ( T , μ ) ≤ b a\le \varphi(T,\mu)\le b aφ(T,μ)b,得到 μ ^ 1 ( X ) ≤ μ ≤ μ ^ 2 ( X ) \hat \mu_1(\boldsymbol X)\le\mu\le\hat \mu_2(\boldsymbol X) μ^1(X)μμ^2(X),这就是所需要的置信区间。

2.正态分布的枢轴变量法

对于单正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),记 X ˉ = 1 n ∑ i = 1 n X i , S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 \bar X=\frac1n\sum_{i=1}^nX_i,S^2=\frac1{n-1}\sum_{i=1}^n(X_i-\bar X)^2 Xˉ=n1i=1nXi,S2=n11i=1n(XiXˉ)2,要求参数置信水平为 1 − α 1-\alpha 1α的双侧置信区间。这里用 u p u_p up表示标准正态分布的上 p p p分位数, t n ( p ) t_n(p) tn(p)表示 t n t_n tn分布的上 p p p分位数,用 χ n 2 ( p ) \chi^2_n(p) χn2(p)表示 χ n 2 \chi^2_n χn2分布的上 p p p分位数。有以下这些情况:

  • σ 2 \sigma^2 σ2已知,求 μ \mu μ:由于 X ˉ ∼ N ( μ , σ 2 / n ) \bar X\sim N(\mu,\sigma^2/n) XˉN(μ,σ2/n),所以
    n ( X ˉ − μ ) σ ∼ N ( 0 , 1 ) 即 [ X ˉ − σ n u α / 2 , X ˉ + σ n u α / 2 ] \frac{\sqrt n(\bar X-\mu)}{\sigma}\sim N(0,1)\\ 即[\bar X-\frac{\sigma}{\sqrt n}u_{\alpha/2},\bar X+\frac{\sigma}{\sqrt n}u_{\alpha/2}] σn (Xˉμ)N(0,1)[Xˉn σuα/2,Xˉ+n σuα/2]

  • σ 2 \sigma^2 σ2未知,求 μ \mu μ:由于 n ( X ˉ − μ ) σ ∼ N ( 0 , 1 ) , ( n − 1 ) S 2 σ 2 ∼ χ n − 1 2 \frac{\sqrt n(\bar X-\mu)}{\sigma}\sim N(0,1),\frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1} σn (Xˉμ)N(0,1),σ2(n1)S2χn12,所以
    n ( X − μ ) S ∼ t n − 1 即 [ X ˉ − S n t n − 1 ( α / 2 ) , X ˉ + S n t n − 1 ( α / 2 ) ] \frac{\sqrt n(X-\mu)}{S}\sim t_{n-1}\\ 即[\bar X-\frac{S}{\sqrt n}t_{n-1}(\alpha/2),\bar X+\frac{S}{\sqrt n}t_{n-1}(\alpha/2)] Sn (Xμ)tn1[Xˉn Stn1(α/2),Xˉ+n Stn1(α/2)]

  • μ \mu μ已知,求 σ 2 \sigma^2 σ2:此时找到 σ 2 \sigma^2 σ2的无偏估计 S n 2 = 1 n ∑ i = 1 n ( X i − μ ) 2 S_n^2=\frac1n\sum_{i=1}^n(X_i-\mu)^2 Sn2=n1i=1n(Xiμ)2,且 n S n 2 σ 2 ∼ χ n 2 \frac{nS_n^2}{\sigma^2}\sim \chi^2_n σ2nSn2χn2,所以
    n S n 2 σ 2 ∼ χ n 2 即 [ n S n 2 χ n 2 ( α / 2 ) , n S n 2 χ n 2 ( 1 − α / 2 ) ] \frac{nS_n^2}{\sigma^2}\sim \chi^2_n\\ 即[\frac{nS_n^2}{\chi^2_n(\alpha/2)},\frac{nS^2_n}{\chi^2_n(1-\alpha/2)}] σ2nSn2χn2[χn2(α/2)nSn2,χn2(1α/2)nSn2]

  • μ \mu μ未知,求 σ 2 \sigma^2 σ2:由于 ( n − 1 ) S 2 σ 2 ∼ χ n − 1 2 \frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1} σ2(n1)S2χn12,所以
    ( n − 1 ) S 2 σ 2 ∼ χ n − 1 2 即 [ ( n − 1 ) S 2 χ n − 1 2 ( α / 2 ) , ( n − 1 ) S 2 χ n − 1 2 ( 1 − α / 2 ) ] \frac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1}\\ 即[\frac{(n-1)S^2}{\chi^2_{n-1}(\alpha/2)},\frac{(n-1)S^2}{\chi^2_{n-1}(1-\alpha/2)}] σ2(n1)S2χn12[χn12(α/2)(n1)S2,χn12(1α/2)(n1)S2]
    以上两种情况,对于 σ \sigma σ直接将上下界开方即可。

对于双正态总体 X m ∼ N ( a , σ 1 2 ) , Y n ∼ N ( b , σ 2 2 ) \boldsymbol X_m\sim N(a,\sigma_1^2),\boldsymbol Y_n\sim N(b,\sigma_2^2) XmN(a,σ12),YnN(b,σ22),且二者相互独立。记 X ˉ = 1 m ∑ i = 1 n X i , Y ˉ = 1 n ∑ j = 1 n Y j , S m 2 = 1 m − 1 ∑ i = 1 m ( X i − X ˉ ) 2 , S n 2 = 1 n − 1 ∑ j = 1 n ( Y i − Y ˉ ) 2 \bar X=\frac1m\sum_{i=1}^n X_i,\bar Y=\frac1n\sum_{j=1}^nY_j,S_m^2=\frac1{m-1}\sum_{i=1}^m(X_i-\bar X)^2,S_n^2=\frac1{n-1}\sum_{j=1}^n(Y_i-\bar Y)^2 Xˉ=m1i=1nXi,Yˉ=n1j=1nYj,Sm2=m11i=1m(XiXˉ)2,Sn2=n11j=1n(YiYˉ)2。有均值差和方差比两种可以估计的参数。

对于均值差 b − a b-a ba的估计,有以下几种情况:

  • m = n m=n m=n,即两组样本对称时,令 Z i = Y i − X i Z_i=Y_i-X_i Zi=YiXi,有 Z i ∼ N ( b − a , σ 1 2 + σ 2 2 ) Z_i\sim N(b-a,\sigma^2_1+\sigma_2^2) ZiN(ba,σ12+σ22),转化为单变量均值估计问题。

  • σ 1 2 , σ 2 2 \sigma_1^2,\sigma_2^2 σ12,σ22已知时, Y ˉ − X ˉ ∼ N ( b − a , σ 1 2 m + σ 2 2 n ) \bar Y-\bar X\sim N(b-a,\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}) YˉXˉN(ba,mσ12+nσ22),标准化即可作为枢轴量。

  • σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2但未知时,取联合方差 S w 2 S_w^2 Sw2
    S w 2 = 1 m + n − 2 [ ∑ i = 1 n ( X i − X ˉ ) 2 + ∑ j = 1 n ( Y i − Y ˉ ) 2 ] T w = ( Y ˉ − X ˉ ) − ( b − a ) T w m n m + n ∼ t m + n − 2 S_w^2=\frac1{m+n-2}\left[\sum_{i=1}^n(X_i-\bar X)^2+\sum_{j=1}^n (Y_i-\bar Y)^2\right]\\ T_w=\frac{(\bar Y-\bar X)-(b-a)}{T_w}\sqrt{\frac{mn}{m+n}}\sim t_{m+n-2} Sw2=m+n21[i=1n(XiXˉ)2+j=1n(YiYˉ)2]Tw=Tw(YˉXˉ)(ba)m+nmn tm+n2
    可以取 T w T_w Tw作为枢轴量。

  • σ 1 2 ≠ σ 2 2 \sigma_1^2\ne \sigma_2^2 σ12=σ22均未知时,可使用大样本方法,取
    U ~ = ( Y ˉ − X ˉ ) − ( b − a ) S 1 2 / m + S 2 2 / n ⟶ L N ( 0 , 1 ) \tilde U=\frac{(\bar Y- \bar X)-(b-a)}{\sqrt{S_1^2/m+S_2^2/n}}\stackrel{\mathscr L}{\longrightarrow}N(0,1) U~=S12/m+S22/n (YˉXˉ)(ba)LN(0,1)
    小样本情形用到非中心 t t t分布。

对于方差比 σ 1 2 / σ 2 2 \sigma_1^2/\sigma_2^2 σ12/σ22,有以下几种情况:

  • a , b a,b a,b已知时,记 S a 2 = ∑ i = 1 m ( X i − a ) 2 m , S b 2 = ∑ j = 1 n ( Y i − b ) 2 n S_a^2=\frac{\sum_{i=1}^m (X_i-a)^2}{m},S_b^2=\frac{\sum_{j=1}^n (Y_i-b)^2}{n} Sa2=mi=1m(Xia)2,Sb2=nj=1n(Yib)2,则有 m S a 2 / σ 1 2 ∼ χ m 2 , n S b 2 / σ 2 2 ∼ χ n 2 mS_a^2/\sigma_1^2\sim \chi_m^2,nS_b^2/\sigma_2^2\sim \chi^2_n mSa2/σ12χm2,nSb2/σ22χn2,于是
    F = S a 2 / σ 1 2 S b 2 / σ 2 2 ∼ F m , n F=\frac{S_a^2/\sigma_1^2}{S_b^2/\sigma_2^2}\sim F_{m,n} F=Sb2/σ22Sa2/σ12Fm,n
    可取 F F F作为枢轴量。

  • a , b a,b a,b未知是,有 ( m − 1 ) S 1 2 ∼ χ m − 1 2 , ( n − 1 ) S 2 2 ∼ χ n − 1 2 (m-1)S_1^2\sim \chi^2_{m-1},(n-1)S_2^2\sim \chi^2_{n-1} (m1)S12χm12,(n1)S22χn12,于是
    F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 ∼ F m − 1. n − 1 F=\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}\sim F_{m-1.n-1} F=S22/σ22S12/σ12Fm1.n1
    可取 F F F作为枢轴量。

3.非正态分布的枢轴变量法

对于指数分布 Exp ( λ ) , f ( x , λ ) = λ e − λ x I ( 0 , ∞ ) ( x ) \text{Exp}(\lambda),f(x,\lambda)=\lambda e^{-\lambda x}I_{(0,\infty)(x)} Exp(λ)f(x,λ)=λeλxI(0,)(x),由于 X ˉ \bar X Xˉ是其UMVUE且 2 λ n X ˉ ∼ χ 2 n 2 2\lambda n\bar X\sim \chi_{2n}^2 2λnXˉχ2n2,所以可取 T = 2 λ n X ˉ T=2\lambda n\bar X T=2λnXˉ为枢轴量。

对于分布 U ( 0 , θ ) U(0,\theta) U(0,θ) n + 1 n X ( n ) \frac{n+1}nX_{(n)} nn+1X(n)是其UMVUE, Y = X ( n ) θ Y=\frac{X_{(n)}}{\theta} Y=θX(n)的概率密度为 f Y ( y ) = n y n − 1 I ( 0 , 1 ) ( y ) f_Y(y)=ny^{n-1}I_{(0,1)}(y) fY(y)=nyn1I(0,1)(y),分布函数为 F Y ( y ) = y n I ( 0 , 1 ) ( y ) + I ( 1 , ∞ ) ( y ) F_Y(y)=y^nI_{(0,1)}(y)+I_{(1,\infty)}(y) FY(y)=ynI(0,1)(y)+I(1,)(y)。取它的倒数 Z = 1 / Y Z=1/Y Z=1/Y,则
f o r z > 1 , F Z ( z ) = P ( 1 ≤ 1 Y ( n ) ≤ z ) = P ( 1 z ≤ Y ( n ) ≤ 1 ) = 1 − F Y ( 1 z ) = 1 − z − n f Z ( z ) = F Z ′ ( z ) = n z − ( n + 1 ) I ( 1 , ∞ ) ( z ) \begin{aligned} for \quad z>1,F_Z(z)=&\mathbf P(1\le \frac{1}{Y_{(n)}}\le z)\\ =&\mathbf P(\frac1z\le Y_{(n)}\le1)\\ =&1-F_Y(\frac1z)\\ =&1-z^{-n}\\ f_Z(z)=&F'_Z(z)=nz^{-(n+1)}I_{(1,\infty)}(z) \end{aligned} forz>1,FZ(z)====fZ(z)=P(1Y(n)1z)P(z1Y(n)1)1FY(z1)1znFZ(z)=nz(n+1)I(1,)(z)
现确定 1 ≤ d 1 ≤ d 2 ≤ ∞ 1\le d_1\le d_2\le \infty 1d1d2,使得
P θ ( d 1 ≤ θ T ≤ d 2 ) = P θ ( d 1 T ≤ θ ≤ d 2 T ) = ∫ d 1 d 2 n z − n − 1 d z = 1 d 1 n − 1 d 2 n = 1 − α \begin{aligned} &\mathbf P_\theta\left(d_1\le \frac\theta T\le d_2\right)\\ =&\mathbf P_\theta(d_1T\le \theta \le d_2T)\\ =&\int_{d_1}^{d_2}nz^{-n-1}dz\\ =&\frac1{d_1^n}-\frac1{d_2^n}=1-\alpha \end{aligned} ===Pθ(d1Tθd2)Pθ(d1Tθd2T)d1d2nzn1dzd1n1d2n1=1α
d 1 = 1 , d 2 = 1 α n d_1=1,d_2=\frac1 {\sqrt[n]{\alpha}} d1=1,d2=nα 1,反解得到置信区间为 [ T , T α n ] [T,\frac T{\sqrt[n]{\alpha}}] [T,nα T]


按照大样本方法找未知参数的置信区间,有以下几个例子。

柯西分布 C ( θ ) C(\theta) C(θ)的位置参数,密度函数为 f ( x , θ ) = 1 π [ 1 + ( x − θ ) 2 ] f(x,\theta)=\frac1{\pi[1+(x-\theta)^2]} f(x,θ)=π[1+(xθ)2]1。由于柯西分布没有均值,样本的中位数 m n m_n mn反映总体的中位数,所以取 m n − θ m_n-\theta mnθ作为枢轴量。在大样本情形下,有
2 n ( m u − θ ) π ⟶ L N ( 0 , 1 ) \frac{2\sqrt n(m_u-\theta)}{\pi}\stackrel{\mathscr L}{\longrightarrow }N(0,1) π2n (muθ)LN(0,1)
对于两点分布 b ( 1 , p ) b(1,p) b(1,p)中抽取的样本 X = ( X 1 , ⋯   , X n ) \boldsymbol X=(X_1,\cdots,X_n) X=(X1,,Xn),取 S n = ∑ i = 1 n X i S_n=\sum_{i=1}^nX_i Sn=i=1nXi,有 S n ∼ b ( n , p ) S_n\sim b(n,p) Snb(n,p)。在大样本情形下,有
S n − n p n p ( 1 − p ) = n ( X ˉ − p ) p ( 1 − p ) ⟶ L N ( 0 , 1 ) P ( ∣ T ∣ ≤ u α / 2 ) ≈ 1 − α \frac{S_n -np}{\sqrt{np(1-p)}}=\frac{\sqrt n(\bar X-p)}{\sqrt {p(1-p)}}\stackrel{\mathscr L}{\longrightarrow }N(0,1)\\ \mathbf P(|T|\le u_{\alpha/2})\approx1-\alpha np(1p) Snnp=p(1p) n (Xˉp)LN(0,1)P(Tuα/2)1α
要从枢轴量中解出统计量,记 γ = u α / 2 , p ^ = X ˉ \gamma=u_{\alpha/2},\hat p=\bar X γ=uα/2,p^=Xˉ,则
∣ n ( X ˉ − p ) p ( 1 − p ) ∣ ≤ u α / 2    ⟺    ∣ n ( p ^ − p ) p ( 1 − p ) ∣ ≤ γ    ⟺    ( p ^ − p ) 2 ≤ γ 2 p ( 1 − p ) n    ⟺    p 2 ( n + γ 2 ) − p ( 2 n p ^ + γ 2 ) + n p ^ 2 ≤ 0 Δ = ( 2 n p ^ + γ 2 ) 2 − 4 n p ^ 2 ( n + γ 2 ) = γ 2 ( γ 2 + 4 n p ^ ( 1 − p ^ ) ) ≥ 0 \begin{aligned} &\left|\frac{\sqrt n(\bar X-p)}{\sqrt{p(1-p)}}\right|\le u_{\alpha/2}\\ \iff&\left|\frac{\sqrt n(\hat p-p)}{\sqrt{p(1-p)}}\right|\le\gamma\\ \iff&(\hat p-p)^2\le\frac{\gamma^2p(1-p)}{n}\\ \iff&p^2(n+\gamma^2)-p(2n\hat p+\gamma^2)+n\hat p^2\le0 \end{aligned}\\ \Delta=(2n\hat p+\gamma^2)^2-4n\hat p^2(n+\gamma^2)=\gamma^2(\gamma^2+4n\hat p(1-\hat p))\ge0 p(1p) n (Xˉp)uα/2p(1p) n (p^p)γ(p^p)2nγ2p(1p)p2(n+γ2)p(2np^+γ2)+np^20Δ=(2np^+γ2)24np^2(n+γ2)=γ2(γ2+4np^(1p^))0
这就可以根据一元二次方程的解法解出两个正根。实际应用中,如果将分母的 p p p直接换成 p ^ \hat p p^则更为简洁,且依然有渐近正态性,即
n ( p ^ − p ) p ^ ( 1 − p ^ ) ⟶ L N ( 0 , 1 ) \frac{\sqrt{n}(\hat p-p)}{\sqrt{\hat p(1-\hat p)}}\stackrel{\mathscr L}{\longrightarrow }N(0,1) p^(1p^) n (p^p)LN(0,1)

对于泊松分布 P ( λ ) , P ( X i = k ) = λ k n ! e − λ P(\lambda),P(X_i=k)=\frac{\lambda^k}{n!}e^{-\lambda } P(λ),P(Xi=k)=n!λkeλ,记 S n = ∑ i = 1 n X i ∼ P ( n λ ) S_n=\sum_{i=1}^n X_i\sim P(n\lambda ) Sn=i=1nXiP(nλ),当 n n n充分大时,有
S n − n λ n λ = n ( X ˉ − λ ) λ ⟶ L N ( 0 , 1 ) \frac{S_n-n\lambda}{\sqrt{n\lambda}}=\frac{\sqrt{n}(\bar X-\lambda)}{\sqrt \lambda }\stackrel{\mathscr L}{\longrightarrow }N(0,1) nλ Snnλ=λ n (Xˉλ)LN(0,1)
于是可以将其作为估计量,方法与两点分布类似。实际运用中,也可以采用与两点分布一样的简化方法,把分母中的 λ \lambda λ换成 λ ^ = X ˉ \hat \lambda=\bar X λ^=Xˉ,直接有
n ( X ˉ − λ ) λ ^ ⟶ L N ( 0 , 1 ) \frac{\sqrt n(\bar X-\lambda)}{\sqrt {\hat \lambda }}\stackrel{\mathscr L}{\longrightarrow }N(0,1) λ^ n (Xˉλ)LN(0,1)

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值