上一节,我们介绍了用图示法来检验样本的正态分布性,这一节,我们介绍用计算法来检验样本的正态分布性。
一、偏度系数和峰度系数的计算
我们知道,偏度系数和峰度系数是了解资料正态分布的指标,两者越接近0,资料就越接近正态分布。在SPSS中,很多过程都可以完成偏度系数和峰度系数的计算,我们介绍用“描述统计”功能计算偏度系数和峰度系数。
1. 建立数据集
2. 操作步骤,点击“选项”-“峰度”-“偏度”


3. 结果分析

结果的最后两列是偏度系数和峰度系数的点估计值和各自的标准误,大致可以看出,二者的95%置信区间(统计量±1.96标准误)都包括0,所以可以初步判断资料服从正态分布。
二、Kolmogorov-Smirnov检验与Shapiro-Wilk检验
Kolmogorov-Smirnov检验是一种非参数检验方法,可以对单样本的拟合优度进行检验,推断样本是否来自正态分布总体、均匀分布总体或Poisson分布总体等,其特点是速度快,便于计算机实现。一般适用于大样本。
Shapiro-Wilk检验也简称为W检验,是S.S.Shapiro与M.B.Wilk于1933年提出,常用于样本量在3~50之间数据的正态性检验。
1.建立数据集
2.在SPSS中运用“探索”过程对资料的正态性进行Kolmogorov-Smirnov检验与Shapiro-Wilk检验

3.“图”-勾选“含检验的正态图”

4. 结果判读

从结果可以看出,无论是Kolmogorov-Smirnov检验,还是Shapiro-Wilk检验,其检验统计量对应的p值均>0.05,表明资料服从正态分布。
同时,SPSS还输出了正态性Q-Q图和去趋势的Q-Q图结果,从图上看,也提示数据服从正态分布。详情见上期内容

