spss正态性检验_SPSS中的正态性检验之二:计算法

本文介绍用计算法检验样本正态分布性。先阐述用SPSS“描述统计”功能计算偏度系数和峰度系数,通过结果初步判断资料是否服从正态分布;又介绍Kolmogorov - Smirnov检验与Shapiro - Wilk检验,在SPSS中运用“探索”过程进行检验,根据p值和Q - Q图结果判断资料是否服从正态分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一节,我们介绍了用图示法来检验样本的正态分布性,这一节,我们介绍用计算法来检验样本的正态分布性。

一、偏度系数和峰度系数的计算

我们知道,偏度系数和峰度系数是了解资料正态分布的指标,两者越接近0,资料就越接近正态分布。在SPSS中,很多过程都可以完成偏度系数和峰度系数的计算,我们介绍用“描述统计”功能计算偏度系数和峰度系数。

1. 建立数据集

2. 操作步骤,点击“选项”-“峰度”-“偏度”

15b466fae8ce98613de4aee8687286a1.png

246044b820a3207db4366edbddd52a1a.png

3. 结果分析

b801632d1c2f3c79ee5a4b9ac5f81868.png

结果的最后两列是偏度系数和峰度系数的点估计值和各自的标准误,大致可以看出,二者的95%置信区间(统计量±1.96标准误)都包括0,所以可以初步判断资料服从正态分布。

二、Kolmogorov-Smirnov检验与Shapiro-Wilk检验

Kolmogorov-Smirnov检验是一种非参数检验方法,可以对单样本的拟合优度进行检验,推断样本是否来自正态分布总体、均匀分布总体或Poisson分布总体等,其特点是速度快,便于计算机实现。一般适用于大样本。

Shapiro-Wilk检验也简称为W检验,是S.S.Shapiro与M.B.Wilk于1933年提出,常用于样本量在3~50之间数据的正态性检验。

1.建立数据集

2.在SPSS中运用“探索”过程对资料的正态性进行Kolmogorov-Smirnov检验与Shapiro-Wilk检验

a9e0522046a95a85ea9ce6ae04ef5b2f.png

3.“图”-勾选“含检验的正态图”

ca727032576dc73735b6d8997d4494bc.png

4. 结果判读

df2753071b1915e6ad2963c59750a165.png

从结果可以看出,无论是Kolmogorov-Smirnov检验,还是Shapiro-Wilk检验,其检验统计量对应的p值均>0.05,表明资料服从正态分布。

同时,SPSS还输出了正态性Q-Q图和去趋势的Q-Q图结果,从图上看,也提示数据服从正态分布。详情见上期内容

938d883a774c593f4b2c2fb0a7412cad.png

a08e5aaf2db449e82c451f10547cf557.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值