常数除以0的极限是什么_【国际数学竞赛】递推数列求极限(2)

49ffed35a18e9d3209586123b3e81391.png

在中学我们经常看到类似这样的递推数列求极限的题目:

,
,求

做这种问题,我们可能想都不想就直接设

,那么
对递归数列两边取极限可得:

解得

(
不满足题意,舍去)。因此

答案是没有问题的,但是为了严谨起见,我们最好之前说明一下

极限存在
根据 单调有界数列必有极限,证明
单调有界就可以了
针对这道题,
,很容易发现
,数列有界。

再令
,求导可知

从而知道
是单调有界,极限存在。

这下就圆满地解决了上述问题,但是如果有三个交织在一起的递归数列求极限该怎么办呢?下面是2009DMM(杜克数学大会)个人赛Individual round最后一题第10题。

dead542301304e717af9fa99541783b8.png
题意:A(0)=(2,7,8)是一个有序三元组。k是n除以3的余数,A(n)是由A(n-1)把第k个位置上的数变为A(n-1)三个数的平均数而得到的。比如,A(0)三个数2、7、8的平均数为17/3,n除以3余1,所以A(1)=(17/3,7,8),同理A(2)=(17/3,62/9,8)。已知按照上述规则,三元组会收敛,三个数都是N,请问N的值是多少?

尝试计算一下可以得到A(1)到A(4)如下图:

1efbd68b9325e45b6866ea405c4ccbb7.png
图:从A(0)到A(4)

根据题意我们可以给出如下的数学关系式。

,其中
,满足如下关系:

.

可以发现,上面是三个数列交织在一起,如果设三个数列的极限都为N,也解不出来。那么该怎么办?

首先,可以相信最后的极限N应该是和初始值

有关系的,如果
变化了,那么N也随之改变。

进一步,在单独分析每一个

时,可以发现
都是
的线性组合,也就是
其中
都是常数。那么我们可以猜测最后的
极限N也应该是
的线性组合,不妨设为:
,其中
为常数。

所以,现在只需要把

求出来,那么极限N也就知道了。下面我们通过构造方程组的方法把
算出来。

因为有三个未知数,那么我们就需要构造三个方程。因为我们现在只需要计算

,那么通过改变初始值
来得到方程组。

首先设

,最后的极限为

为初始值得到的A(1)到A(3)如下:

02a9a2d587438abd1568634410c814a6.png
图:初始值为(1,0,0)的A(1),A(2),A(3)

因为A(1)到A(3)是一轮操作(分别得到了

),从
出发按照相同的递推规则得到的极限是相同的,那么有

于是,得到了第一个方程

,化简得到第一个方程:

同理,我们可以取其他初始值构造不同的方程。取

那么

,计算A(1)到A(3)可得

6cd29b8323b40a3e9b1c37d8d4b58883.png
图:初始值为(1,1,0)的A(1),A(2),A(3)

接着

于是,

,化简可得第二个方程:

最后,取

,得到第三个方程:

。(1就是最后的极限)

最后,联立上述三个方程:

,

解得:

于是,我们就知道了任意初始值

时,极限为

当初始值

时,

总结一下,虽然这道题是三个数列交错在一起,非常的复杂,但是我们还是利用了先设极限再求解的方法,跳过了中间漫长的计算过程,通过构造方程来求解。当然,极限是初始值的线性组合是我们在分析题目的过程中发现的,把求解极限的问题转化成了求解线性权重的问题。在构造方程的过程中,我们也利用了从同一个初始值

出发,任取中间某一个状态
做为初始值,最后的极限都是相同的。

等等,这道题我真的是那么做的吗?我不是用Matlab跑了一下程序吗?。。

A=[1 1 0];
disp(A);
for i=1:1:10
    for j=1:1:3
        sum=A(1)+A(2)+A(3);
        A(j)=sum/3;
        format rational
        disp(A);
    end
end

刚开始拿到这道题时,也感觉无从下手,所以就编了个程序跑了一下,找到了答案。后来在调整初始值的过程中发现了原来极限是初始值的线性组合,然后就想着怎么样把三个权重算出来,紧接着就想到了可以构造方程。但是最开始的时候选择的三个始除值是:(1,0,0)、(0,1,0,)和(0,0,1),发现解不出

。所以,又换了一组初始值,总算解决了上述问题。不过在取(1,0,0)、(0,1,0,)和(0,0,1)时,分别得到了对应的极限值为
,
,所以也能知道权重分别为

数学问题的解决往往不是一蹴而就的,通过一系列地探索,得到最后的结果还是非常有趣的。所以会编程还是非常有用的。


感谢 @啦啦啦,已经知道了

那么就可以写成

那么

哈哈,为什么我都写出了关系式都没有想到呢?= =。

关于其他递推数列求极限的问题可参阅:

双木止月Tong:【国际数学竞赛】递推数列求极限(1)​zhuanlan.zhihu.com
c02397207a8bbcdacf80ceb9b7c3d36c.png

想了解更多的数学竞赛真题可参阅

双木止月Tong:【国际数学竞赛】目录​zhuanlan.zhihu.com
388619822072b929444bd920da8014e0.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值