
蝴蝶定理最开始是一个关于圆的定理,因其图形像一只翩翩起舞的蝴蝶,被称为蝴蝶定理。后来推广到了任意二次曲线之中。笔者最近做到几道高考模拟题,发现这个背景命题还是颇有特色的。
蝴蝶定理及其推广
圆中的蝴蝶定理
蝴蝶定理:过圆内一点M,引出三条弦AB,CD,PQ,且M是PQ的中点,直线AD与直线BC交直线PQ于EF,则ME=MF

在这里我仅介绍一种经典的证法——霍纳证法
证明:作
注意到
同理,可知
注意到
如果我们将圆换成一个任意的二次曲线,结论也是一样成立的
外接图形为任意二次曲线的蝴蝶定理
定理:在圆锥曲线中,过弦的中点
任作两条弦
,直线
交
于点
,则
![]()

证明:以
将
设直线
注意到两条直线是退化的二次曲线,当
在上述证明中,没有使用到AEC、BFD共线的条件,因此,我们将曲线系中的曲线修改成任意的二次曲线,结论依然成立,即:
定理:在圆锥曲线中,过弦的中点
任作两条弦
,过
的二次曲线(包括退化情形)交
于点
,则
![]()
下面给出图示,让读者更直观地感受


蝴蝶定理的应用
笔者选了三道高考模拟题,下面我们就用几个具体的例子来加深对蝴蝶定理的理解。
笔者建议各位读者先自己思考再下拉看解答哦
例1:过点的直线与
交于
,过
的直线与
交于
,若
与圆
相切,则
与
的交点
的轨迹方程

解:如图,过
我们再证切点
故
所以
根据蝴蝶定理,

例2:如图,在抛物线外有一点
,过点
作
交分别抛物线于
,连接
并记其交点为
,过
作倾斜角为
的直线
,交
于
,且
(图中用原谅色标出),求
(图中用蓝色标出)的取值范围

解:如图,记
由蝴蝶定理,知
设
而
在抛物线方程中,当
故

例3:在椭圆中,过焦点
作
轴的垂线,交椭圆于
。过
的中点
的两条弦
,且
交直线
于
,则
是否是一个定值?如果是,求出这个定值;如果不是,请说明理由。
做这道题之前,我想再给大家介绍蝴蝶定理的一个推广
Candy定理:过圆中一点引出三条弦
,直线
交直线
于
,则
![]()

证明:连接
因此,两组点列
即
整理,得
注意到

介绍了Candy定理以后,例3也就迎刃而解了,这里就留给各位读者做思考题吧。
笔者是第一次在知乎写文章,希望能够得到各位读者的认同。
下次笔者将更新高考圆锥曲线中帕斯卡(Pascal)定理的构型,希望各位读者能够喜欢。