如何将有向图转化为无向图_有向图的学习笔记1 动态更新

ce9b62b57b08beadb7b0ddcc4e46e1a3.png
最近山东大学开展了 有向图的讨论课程,我在这也总结一些我研究生上课时候用的教材和这次学习的体会,机会难得,非常期待第二本书的作者Jorgen Bang-Jensen讲 网络流这一块,这一块我一直理解的不透彻。借着这次机会学习。我主要用下面两本的教材:

a1936f64bf3356340ad4538fd99088dd.png

1 教材分析 (不断更新)

c52082b3ca727fd87360aa2d2fe6b064.png

da78adbb3edc6fec49a5b533e5991438.png

例1:

ffaad8cf462304ac828e6dfa90128b78.png

图中

是环弧,
是平行弧,
作为反向弧。

425003b42b811d6dbceb54c8d56f41c2.png

可以用例1的例子尝试解释上面说的概念。注意

的出度是2,入度为3.

下面定理前半部分 顶点的度和等于边数的两倍,类似于无向图的 握手引理定理8.1.1 对于任何有向图
,都有

定义8.1.5 与有向图的概念相对应,边不带有方向的图称为无向图.
给定一个无向图

,给它的每条边
确定一个方向,便可得到一个有向图, 这个有向图称为
的一个
定向图,而
称为这个有向图的
基础图底图 (underlying graph).

定义8.2.1有向图的一条有向途径是指一个有限非空序列

,它的各项交替地是顶点和弧,使得
.弧不重复的有向途径称为有向迹;顶点不重复的有向途径称为有向路;首尾相接的有向路称为有向圈.

注 有向图的底图中有长的路未必该有向图中就有长的有向路.例如,下图所示的有向图 其底图中的最长路为6,但其最长有向路的长为1.

66a5bdac58471b7610082498c76e37f8.png

令人惊奇的是,有向图中·有向路的长却与其底图的色数有关

定理8.2.1 (Vitaver, 1962; Roy, 1967; Gallai, 1968) 以图

为底图的有向图
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值