pvrect r语言 聚类_聚类算法 sklearn k_means (返回一维数据的最优聚类)

from sklearn.cluster import KMeans

import numpy

import collections

import pandas

from sklearn import metrics

def k_means(pp1,clus):

pv=list(pp1)

if len(set(pv))>clus:

gf=numpy.array([pv]).T

estimator = KMeans(n_clusters=clus)#构造聚类器

estimator.fit(gf)#聚类

label_pred = estimator.labels_ #获取聚类标签

#print(label_pred)

aa=collections.Counter(label_pred)

print('aa=',aa)

v=pandas.Series(aa)

gg=list(v)

index_max=gg.index(max(gg))

print('index_max=',index_max)

centroids = estimator.cluster_centers_ #获取聚类中心

print('centroids=',centroids)

#inertia = estimator.inertia_ # 获取聚类准则的总和

center=centroids[index_max][0]

return ((center))

else:

return (pp1.mean())

def k_means_label(a):

def km_index(k):

pv=list(a)

gf=numpy.array([pv]).T

#from sklearn.cluster import KMeans

y_pred = KMeans(n_clusters=k, random_state=9).fit_predict(gf)

index=metrics.silhouette_score(gf, y_pred, metric='euclidean')

print('index',index)

return index

cs=list(range(2,6))

df=list(map(km_index,cs))

df1=pandas.Series(df,index=cs)

df2=df1.sort_values(ascending=False)

df3=list(df2.index)[0]

return df3

a=numpy.random.randint(0,1000,10)

cc=k_means_label(a)

b=k_means(a,cc)

print('b=',b)

index 0.804055967401

index 0.805649685362

index 0.65899543985

index 0.517110170591

aa= Counter({0: 5, 1: 3, 2: 2})

index_max= 0

centroids= [[ 160.8]

[ 610. ]

[ 824.5]]

b= 160.8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值