python 水位_基于图像处理(HOG)与数据分布特征的水位识别

这篇博客介绍了使用Python和计算机视觉技术进行水位识别的方法,重点是HOG算法。作者通过图像预处理、识别、过滤和数据处理四个阶段,解决图像中的各种挑战,包括模糊处理、噪声过滤、边缘检测和单峰过滤,以提高识别准确性。最后,还进行了数据处理以优化识别结果并减少固有误差。
摘要由CSDN通过智能技术生成

Update

代码已经上传到github上了,可以点这里

Cutting

一直说这要整理一下Computer Vision课程的大作业,拖了好久。这两天忙着写一个订单处理的第三方库,陷入了僵局,所以换个口味,把大作业整理一下。

Requirement

Water depth measurement.

实现目标:通过使用计算机视觉及图像处理技术,通过正确检测插入水体的标尺和水体水平面的刻度值来确定水位高度。图像数据见附件。

可允许用户输入标尺最上端的高度值、照相机镜头距离标尺最上端的和水平面形成的夹角、刻度尺正面和照相机之间夹角值,以及标尺每个刻度的高度值。

评分标准:

能否解决存在的多种问题,其中包括:

a. 标尺刻度靠近水面的部分可能由于长期浸泡在污水中出现污渍而无法识别。

b. 水面可能出现的雾气,造成识别困难。

c. 标尺可能有一定的弧度,造成精确度量存在问题。

计算效率:使用任意目前流行的Intel i3处理器及更快的处理器,每个4096*4096像素分辨率以内的图像测量时间不超过20秒(包含图像读取及数据值输出)。

3.系统完整性。

使用语言:Visual C++(可使用OpenCV)

部分附件

样例图

Train of Thought

整个过程大致分为四个阶段:图像预处理、识别、过滤、数据处理

1. 预处理

首先会进行一个直方图均衡化的操作。再由于输入的图像差别较大ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值