求解出能被5整除的正整数的乘积_5. 置换群、单群、可解群、自同构群、自由群...

前言

  1. 本章将介绍几种重要的群,包括置换群、单群、可解群、自同构群、自由群。下一章将介绍群在集合上的作用、轨道、Sylow定理等内容。
  2. 本章中的许多内容,在本科教材和实际教学中未必能分配足够的课时深入讨论。因此本篇文章中的部分内容可以酌情跳过。

5.1 置换群

关于循环群、置换群、变换群、n次对称群、交错群的定义,以及置换的表示方法本章不再给出,请参考第一篇:1. 群的定义与基本性质。首先给出一个简单的定理。

Cayley定理
是一个群,则
同构于
的一个子群。其中
上所有双射的集合。

证明:对于

,定义一个映射
使得
,显然它是一个双射(请自行证明),因此
。再定义一个映射
使得
,可以验证
是一个群同态、单射,因此
,证毕。

上述证明中出现的

也称作
上的一个
左平移(left translation),得到的同构群
称为群的
左正则表示(left regular representation),同样地也有右平移和右正则表示。

上述定理的推论是有限群都同构于n次对称群的一个子群。

轮换和对换
设置换
,如果
,且
之外的元素在
下都保持不变,则称
轮换(cycle),记作
,也称t-轮换,t是轮换的长度。长度为2的轮换称为
对换(transposition),即两个元素交换。长度为1的轮换是恒等变换。

上述定义在第一章中已经出现过一次。

定理:k-轮换在
中的阶是k。

这是显然的,做k次k-轮换就等于恒等变换。下面再复习一下其他概念。

如果两个轮换
中没有相同的数字,即
,则称两个轮换是
不相交(disjoint)的。
(1)
中的每个置换都可以写成不相交的轮换的乘积。

(2)不相交的轮换在乘积(复合)时可以相互交换。
(3)如果
中不相交的轮换,则
是所有
的长度的最小公倍数。

(4)每个轮换都可以写成若干个对换的乘积,从而每个置换都可以写成若干个对换的乘积,写成的对换的个数的奇偶性是一定的。即同一个置换不可能同时写成奇数个对换之积和偶数个对换之积。
(5)能写成奇数个对换之积的置换是奇置换,能写成偶数个对换之积的置换是偶置换。如果k是奇数,则k-轮换是偶置换;否则k-轮换是奇置换。
(6)
中所有的偶置换构成一个群,称为交错群
,则

下面介绍对称群和交错群的生成系。

对称群和交错群的生成系
(1)
时,对换
生成

(2)
时,所有长为
的轮换生成

(3)
时,
生成

证明:回忆生成系的定义,即一个群中的每个元素都可以表示成若干个生成系中元素的乘积。

(1)已知

中每个元素都可以写成对换的乘积。而任何一个对换
,其中
。(注:还记得编程中如何交换两个变量的值吗?)

(2)已知

中的元素都是偶数个对换的乘积,只要证明两个对换的乘积
能够被长为3的轮换生成即可,设
。若
,则有
;若
的交集为空集,则

(3)这是一个比(2)更强的结论,只要证明任何一个长为3的元素能被下列这些元素

生成即可。不妨设
的交集是空集,不是空集的情况较容易验证,此时
,证毕。

最后介绍置换的型和共轭类。

置换的型
写成互不相交的轮换的乘积,设长为
的轮换有
个,其中
,则有
,将
称为
(type),并记为

回顾共轭的定义,

共轭指的是存在
使得
定理:设
,则
共轭当且仅当它们的型相同。

举一个

的例子。
的共轭类和正规子群

首先,
中有24个元素,按照不同的型分为5个共轭类。群的中心是长为1的共轭类的并,
。下面列出所有的共轭类划分:

(1)型为
,共轭类为

(2)型为
,共轭类为

(3)型为
,共轭类为

(4)型为
,共轭类为

(5)型为
,共轭类为

对于
的非平凡正规子群
,它的阶数只可能在
之中。而且正规子群在包含一个元的同时也需要包含其他共轭元,因此
的若干个共轭类的并集。从而
时,
称为Klein四元群。
时,
.

5.2 单群

单群
一个群
如果是非平凡的,
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值