认
为
S
3
是
循
环
群
的
同
志
应
该
都
只
关
注
了
一
个
维
度
的
操
作
,
比
如
(
1
,
2
,
3
)
的
依
次
轮
换
旋
转
认为S_3是循环群的同志应该都只关注了一个维度的操作,比如(1,2,3)的依次轮换旋转
认为S3是循环群的同志应该都只关注了一个维度的操作,比如(1,2,3)的依次轮换旋转
循环置换(轮换:用一个括号扩起轮换的元素)
不相交的轮换因为互不影响所以满足交换律
任何一个置换恰有一法写成不相交轮换的乘积
2轮换称为对换
奇置换和偶置换
任何一个r-轮换能写成r-1个对换的乘积,由上边的任何一个置换恰有一法写成不相交轮换的乘积
如果一个置换等于偶数个对换的乘积,则我们称之为偶置换。否则我们称之为奇置换。显然,偶置换的逆序数为偶数,奇置换的逆序数为奇数。
参考书:简明抽象代数+顾沛+邓少强