matlab 广义帕累托分布,基于对数矩的广义帕累托分布参数估计方法与流程

本文介绍了一种用于海杂波背景目标检测的广义帕累托分布参数估计方法,通过归一化和对数矩估计提高精度和执行效率。该方法降低矩估计阶数,避免了最大似然估计的高时间复杂度,适用于雷达系统的实时处理需求,有助于提升目标检测性能。
摘要由CSDN通过智能技术生成

a033a96b3b27b7d3261d24d34d6704c7.gif

本发明属于信号处理技术领域,具体涉及一种广义帕累托分布参数估计方法,可用于海杂波背景下的目标检测。

背景技术:

海杂波背景下的目标检测技术是雷达应用技术中一个至关重要的研究方向,在军事和民用领域已经得到广泛应用。而对于海杂波统计特性的准确分析是海杂波背景下目标检测技术能否取得良好效果的重要因素。因此,给出合适的模型并对于其模型参数进行准确估计成为我们需要解决的重要问题。

随着现代雷达系统距离分辨力的提高,雷达回波出现以往低分辨力雷达系统所没有的统计特性,通常表现为其回波包络的拖尾变长,异常值变多的特点。而广义帕累托分布作为复合高斯模型的一种,在对于高分辨低擦地角海杂波的功率分布拟合上取得了很好的效果。因此在海杂波统计特性的研究中占据重要地位。而在海杂波背景下的目标检测中,杂波模型参数的估计质量又对于目标检测效果有很大影响,因此在重拖尾的杂波数据下给出广义帕累托的分布参数具有重要的研究意义。

近年来,很多研究者对广义帕累托分布的参数估计方法,提出了一些基于特定条件下的广义帕累托分布参数估计理论。

文献“Castillo,E.,Hadi,A.S.,1997.Fitting the generalized Pareto distribution to data.J.Amer.Statist.Assoc.92,1609–1620.”中给出广义帕累托分布的矩估计以及最大似然估计方法,分别根据样本矩以及似然函数对于参数进行估计,但是由于矩估计本身容易受到样本数量和异常数据的影响,其估计精度难以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值