光栅衍射主极大个数_衍射光学元件(DOE)概述

衍射光学元件(DOE)在光学成像和微光机电系统中有着广泛应用,包括光束整形、光束分裂和光束聚焦。DOE具有高衍射效率和特殊光学性能,例如二元光学元件,能够实现平像场性质、特殊色散和温度稳定性。光束整形方面,DOE可用于生成平顶光束、光束扩散、M型光束、衍射多圈和衍射轴锥镜等。此外,光束分裂功能包括光束分束器、光束采样器和结构光DOE。在光束聚焦领域,多焦点DOE、长焦深DOE、双波长和三波长聚焦镜等元件解决了不同激光加工需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来衍射光栅技术、全息术、傅里叶光学和计算全息等技术推动了衍射光学理论的发展,特别是在衍射光学元件方面的研究已经达到了实用化的水平。

衍射光学元件(diffractiveoptical element,DOE)具有高衍射效率、独特的色散性能、更多的设计自由度、宽广的材料可选性,并具有特殊的光学性能,在光学成像技术、微光机电系统等领域中有重要的应用前景。

e7a6912a58dfbc776d99c67e143c0cea.png

菲涅尔波带片是早期利用衍射原理的光学元件。

相息图元件利用连续的浮雕结构,可以控制能量到某一衍射级次。

二元(衍射)光学元件是多阶相位结构。对理想的连续相位轮廓以2为量化倍数,做成台阶状近似,故称为二元(衍射)光学元件。二元(衍射)光学元件具有体积小、重量轻、易于阵列集成和大量复制的特点。

下图所示为一个折射透镜演变成为2π模的连续浮雕及多阶浮雕结构表面的二元光学的过程。

f2afb7d9640897875b0993f81a9fbd9a.png

二元成像光学元件具备任意相位分布,提供了更多的自由度来校正系统的像差,其主要特点有:

特殊色散性质,二元光学元件光焦度与光波长成正比,可见光波段的等效阿贝数约为-3.452,而光学玻璃的阿贝数在20以上,故其与凸透镜组合可以消色差;

平像场性质,二元光学元件的场曲为零,单个二元光学元件不需要考虑校正场曲;

温度稳定,与普通透镜焦距组合有助于折/衍混合系统的温度稳定作用。

还具有薄型元件的性质。

衍射光学元件的主要应用:

1.光束整形

(1)平顶光束整形

“ Top-Hat ”或“ Flat-Top ”光束整形是衍射光学元件(DOE),用于将近高斯入射激光束转换为圆形,矩形,正方形,线形或均匀强度(平坦)点或在特定工作平面中具有锋利边缘的其他形状。

<think>好的,我现在需要帮助用户解决关于基于傅里叶光学理论在MATLAB中进行光栅衍射学推导和代码实现的问题。首先,我需要理解用户的需求。用户可能是在进行大学物理的学习或研究,需要利用MATLAB来模拟光栅的夫琅禾费衍射,从而更直观地理解衍射图样与光栅结构之间的关系。 接下来,我应该回顾傅里叶光学的基本原理,特别是夫琅禾费衍射的相关理论。根据傅里叶变换的性质,夫琅禾费衍射图样实际上是光瞳函的傅里叶变换的平方模。因此,学推导部分需要从光栅的透过率函出发,进行傅里叶变换得到衍射场的分布。 然后,我需要考虑如何将学公式转化为MATLAB代码。这里可能需要用到MATLAB中的FFT函,或者直接解析求解傅里叶变换。例如,对于一维光栅,其透过率函通常是矩形函的组合,而二维光栅可能需要二维傅里叶变换。同时,用户提供的引用中提到了comb函和抽样函的使用,这可能涉及到如何构建光栅的结构。 用户提供的引用[3]中有一个comb_o函的代码示例,这可能用于生成光栅的周期性结构。需要分析这段代码的作用,它可能是用来生成狄拉克梳函,模拟周期性光栅的。但该函中使用高斯函和sin函的组合来近似狄拉克函,这可能需要调整参才能正确模拟。 在学推导部分,首先需要明确光栅的透过率函。例如,一维光栅可以表示为多个狭缝的排列,其透过率函是矩形函的卷积组合。二维光栅可能是矩形孔的二维排列。然后,夫琅禾费衍射计算需要将透过率函进行傅里叶变换,得到衍射场的复振幅,再取其强度作为光强分布。 对于代码实现,可能需要先生成光栅的透过率函,然后进行FFT变换。需要注意的是,夫琅禾费衍射的条件是满足远场近似,此时可以使用FFT来近似计算傅里叶变换。同时,模拟时需要设置合适的空间频率和采样点,以确保衍射图样的正确显示。 另外,用户可能希望得到具体的代码示例,比如如何生成一维光栅或二维光栅,并进行傅里叶变换得到衍射图样。可能需要参考引用中的代码结构,尤其是如何构建光栅和使用FFT。例如,引用[3]中的comb_o函可以用来生成周期性结构,结合矩形函来构造光栅的透过率。 在验证过程中,可能需要调整参,如光栅周期、缝宽、波长和衍射距离等,以确保模拟结果的正确性。同时,需要注意MATLAB中的矩阵索引和空间坐标的对应关系,避免出现位置偏移的问题。 最后,用户可能需要了解如何将一维情况扩展到二维,比如正交光栅或六角形光栅,这需要二维傅里叶变换和相应的结构生成方法。此外,可能还需要考虑光栅的倾斜或其他复杂结构,但用户的问题主要集中在基础的学推导和代码实现上,因此应优先解决这些基本问题。 总结步骤:首先进行学推导,明确透过率函和傅里叶变换的关系;然后编写MATLAB代码,生成光栅结构,进行FFT并显示衍射图样;最后验证和调整参,确保结果正确。同时,需要参考用户提供的引用中的方法,特别是comb函和抽样函的应用。</think>### 基于傅里叶光学光栅衍射学推导与MATLAB实现 #### 一、学推导 夫琅禾费衍射衍射场复振幅分布可表示为光瞳函(透过率函)的傅里叶变换: $$ U(x', y') = \frac{e^{jkz}}{j\lambda z} \iint_{-\infty}^{\infty} t(x,y) e^{-j\frac{2\pi}{\lambda z}(x'x + y'y)} dxdy $$ 其中 $t(x,y)$ 为光栅透过率函,$\lambda$ 为波长,$z$ 为衍射距离。 **1. 一维光栅模型** 设光栅周期为 $d$,缝宽为 $a$,总缝为 $N$,则透过率函可表示为: $$ t(x) = \text{rect}\left(\frac{x}{a}\right) * \sum_{n=0}^{N-1} \delta(x-nd) $$ 其傅里叶变换为: $$ \mathcal{F}\{t(x)\} = a \cdot \text{sinc}\left(\frac{a\xi}{\lambda z}\right) \cdot \frac{\sin(N\pi d \xi/\lambda z)}{\sin(\pi d \xi/\lambda z)} $$ 其中 $\xi = x'/(\lambda z)$ 为空间频率[^3]。 **2. 二维矩形光栅** 若光栅在两个方向均有周期性结构: $$ t(x,y) = \left[\text{rect}\left(\frac{x}{a}\right) * \text{comb}_d(x)\right] \cdot \left[\text{rect}\left(\frac{y}{b}\right) * \text{comb}_d(y)\right] $$ 衍射图样将呈现二维点阵分布。 #### 二、MATLAB代码实现 ```matlab %% 参设置 lambda = 632.8e-9; % 波长(He-Ne激光) d = 50e-6; % 光栅周期 a = 20e-6; % 缝宽 N = 10; % 缝 L = 1e-3; % 模拟区域尺寸 Nx = 1024; % 采样点 %% 生成光栅透过率函 x = linspace(-L/2, L/2, Nx); t = zeros(1,Nx); for n = 0:N-1 center = -d*(N-1)/2 + n*d; % 中心对称排列 left = center - a/2; right = center + a/2; t = t + (x > left & x < right); end %% 傅里叶变换计算衍射场 U = fftshift(fft(t)); % 快速傅里叶变换 I = abs(U).^2; % 光强分布 %% 结果显示 figure; subplot(1,2,1), plot(x*1e3,t); title('光栅透过率函'), xlabel('x (mm)') subplot(1,2,2), plot(x*1e3,I/max(I)); title('衍射光强分布'), xlabel('x (mm)') ``` #### 三、关键实现细节 1. **坐标系统对齐** 使用`fftshift`将零频分量移动到频谱中心,确保衍射图样正确显示空间频率分布。 2. **抽样函实现** 引用[3]中的`comb_o`函可用于生成周期性结构: ```matlab function y = comb_o(x, d) y = (mod(x+d/2, d) < d/1e3); % 改进的狄拉克梳函实现 end ``` 3. **二维扩展方法** 二维光栅可通过矩阵运算实现: ```matlab [X,Y] = meshgrid(x,x); t_2D = comb_o(X,d) .* comb_o(Y,d) .* (abs(X)<a/2) .* (abs(Y)<a/2); ``` #### 四、典型结果验证 当 $d=50\mu m$, $a=20\mu m$ 时,衍射图样将呈现: - 主极大间距:$\Delta x = \lambda z/d$ - 包络零点位置:$x_0 = \lambda z/a$ - 次级极大量:$N-2$ 个[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值