mask rcnn属于dnn么_Mask R-CNN训练自己的数据集在win10上的踩坑全过程:CUDA9.0+CUDNN7.1.4+Tensorflow-gpu1.9.0+keras-gpu2.2....

本文详细介绍了如何在Windows 10上配置CUDA 9.0、CUDNN 7.1.4、Tensorflow-GPU 1.9.0和Keras-GPU 2.2.4,以运行Mask R-CNN。文章提供了从下载依赖到训练自定义数据集的完整步骤,并分享了在训练过程中遇到的错误及解决方案,包括加载预训练权重时形状不匹配的问题。
摘要由CSDN通过智能技术生成

基础配置

首先你需要在win10上下载Git(用于我们在github上面下载源码)和MinGW(方便我们在win10上也能用linux的make操作命令)。

接着你要下载cuda9.0和cudnn7.1来绑定你的windows的Nvidia

接着你需要在win10上面安装anaconda3(切记,python用的是3.6+,目前的tesorflow-gpu只能匹配这个)

然后在现有的base环境下(或者配置新环境),按照顺序依次用conda install cudatoolkit==9.0->conda install cudnn==7.1.4->conda install tensorflow-gpu==1.9.0->conda install keras-gpu==2.2.4

然后记住要装一些其他需要的包,比如(matplotlib、openCV、cython、scikit-image等等),总之就是按照提示conda install或者pip install

前期需要下载的内容

首先大家用在github上把mask r-cnn的项目下载到本地;

然后要把cocoapi下载到本地;

接着是把预权重mask_rcnn_coco.h5放到mask r-cnn文件下面的新建文件夹logs下面;

最后是打开anaconda prompt,cd到cocoapi/PythonAPI的目录,一次输入make和make -j8;

把PythonAPI下面更新的pycocotools放到mask r-cnn文件的samples/coco/里;

先附上mask-rcnn的官方测试代码:

import os

import sys

import random

import math

import numpy as np

import skimage.io

import matplotlib

import matplotlib.pyplot as plt

import cv2

import time

ROOT_DIR = os.path.abspath("G:\Mask_RCNN")

sys.path.append(ROOT_DIR)

from mrcnn import utils

import mrcnn.model as modellib

from mrcnn import visualize

sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))

import coco

MODEL_DIR = os.path.join(ROOT_DIR, "logs")

COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_coco.h5")

if not os.path.exists(COCO_MODEL_PATH):

utils.download_trained_weights(COCO_MODEL_PATH)

print("cuiwei***********************")

IMAGE_DIR = os.path.join(ROOT_DIR, "images")

class InferenceConfig(coco.CocoConfig):

GPU_COUNT = 1

IMAGES_PER_GPU = 1

config = InferenceConfig()

config.display()

model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)

#model.load_weights(COCO_MODEL_PATH, by_name=True)

model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=[ "mrcnn_class_logits", "mrcnn_bbox_fc"])

# =============================================================================

# class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',

# 'bus', 'train', 'truck', 'boat', 'traffic light',

# 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',

# 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',

# 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',

# 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',

# 'kite', 'baseball bat', 'baseball glove', 'skateboard',

# 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',

# 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',

# 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值