树的定义:具有n(n > 0)个节点的有限非空集合,且有且只有一个特定的节点成为根。
相关术语 :
- 节点:节点表示树中的元素,包括数据项及若干指向子树的分支。
- 节点的度:节点所拥有的子树的个数称为该节点的度(degree)。
- 树的度:树中各节点度的最大值成为树的度。
- 叶节点:度为0的节点称为叶节点。
- 分支节点:度不为0的节点成为分支节点。(除了叶节点的节点都是分支节点)
树的性质:
- 树的节点数等于所有节点的度数之和。
Total(节点)=∑ (度数+1)。 - 度为k的树中第n层上最多有 k^(n-1)个节点。
证:根节点只有1个,而树的度为k,则假设从第二层最多为k个节点,第三层k*k,以此类推为k^(n-1). - 深度为h的k叉树最多有:(k^h-1)/(k-1)。
证明参考等比数列求和公式。 - 有n个节点的k叉树的最小高度是:[ logk(nk-k)]+1
通过证明等比数列求和公式的求对数形式来获得。