gcn 图卷积神经网络_一文读懂简化的图卷积网络GCN(SGC)| ICML 2019

作者 | yyl424525

来源 | CSDN博客

文章目录

1 相关介绍

1.1 Simple Graph Convolution (SGC)提出的背景

1.2 SGC效果

2 Simple Graph Convolution 简化的图卷积

2.1 符号定义

2.2 图卷积网络GCN

  • GCN vs MLP

  • Feature propagation 特征传播

  • Feature transformation and nonlinear transition

  • 分类器

2.3 简化的图卷积SGC

  • 线性化

  • 逻辑回归

  • 优化细节

3 谱分析

3.1 在图上的初步做法

3.2 SGC and Low-Pass Filtering 简化的图卷积和低通滤波器

4 相关工作

4.1 图神经网络

4.2 其他在图上的工作

graph embedding methods

5 实验结果

5.1 Citation Networks & Social Networks

  • Performance

  • Efficiency

5.2 下游任务

Text classification

Semi-supervised user geolocation

Relation extraction

Zero-shot image classification

Graph classification

论文:Simplifying Graph Convolutional Networks 简化的图卷积网络GCN(SGC)

作者:Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, Kilian Q. Weinberger

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值