图神经网络论文阅读(二十一) Simplifying Graph Convolutional Networks,ICML2019

本文来自Cornell University和Federal Institute of Ceara,探讨了GCN的复杂性问题,提出了Simple Graph Convolution (SGC)模型,通过去除非线性并压缩为单线性变换降低复杂性。SGC被证明等价于图形谱域上的低通滤波器,解释了GCN的renormalization trick。实验展示了SGC在图分类任务上的有效性和效率。
摘要由CSDN通过智能技术生成

本文作者来自Cornell University, Federal Institute of Ceara (Brazil)。
本文提到,GCNs从其深度学习传承中继承了相当大的复杂性,这对于要求较低的应用程序来说可能是负担和不必要的。因此本文旨在采用线性模型的方式去降低GCN的复杂度,通过反复去除GCN层之间的非线性,并将结果函数压缩为单个线性变换,来降低GCNs的过度复杂性,并提出网络Simple Graph Convolution (SGC)。

Model

在这里插入图片描述
假设GCN层之间的非线性不是关键的——但是大部分好处来自于局部平均。因此,本文删除了每一层之间的非线性过渡函数,只保留最后的softmax(以获得概率输出)。得到的模型是线性的,但仍然具有k层GCN相同的接受域增加。因此模型可以简化为:
在这里插入图片描述
其中

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月的echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值