本文作者来自Cornell University, Federal Institute of Ceara (Brazil)。
本文提到,GCNs从其深度学习传承中继承了相当大的复杂性,这对于要求较低的应用程序来说可能是负担和不必要的。因此本文旨在采用线性模型的方式去降低GCN的复杂度,通过反复去除GCN层之间的非线性,并将结果函数压缩为单个线性变换,来降低GCNs的过度复杂性,并提出网络Simple Graph Convolution (SGC)。
Model
假设GCN层之间的非线性不是关键的——但是大部分好处来自于局部平均。因此,本文删除了每一层之间的非线性过渡函数,只保留最后的softmax(以获得概率输出)。得到的模型是线性的,但仍然具有k层GCN相同的接受域增加。因此模型可以简化为:
其中