z变换公式表_05 -- 常见单元的形函数和坐标变换

形函数的定义

形函数是定义于单元内部的、坐标的连续函数,它应满足下列要求:

(1)在结点i上,Ni=1;在其它结点上,Ni=0;

(2)能保证用它定义的未知量(u,v或x,y)在相邻单元之间的连续性;

(3)应包含任意线性项,以便用它定义的单元位移可满足常应变条件;

(4)应满足下列等式:∑Ni=1,以便用它定义的单元位移可反映刚体移动;

形函数的阶次越高,单元形状越复杂,单元适应能力也越强,求解应力问题时所需单元数量越少,因而,平衡方程组的阶较低,求解过程所花费的时间也越少。

一维形函数举例:

0ef8a71cc23aad3c8aa00970af9382a4.png

二维形函数举例:

fdb263b19ecac7d573b6732941a2aa8c.png

三维形函数举例:

9198997d10f2302713cdcbc52947d7db.png

bd69de5abe4d1b4caabffd8d45c3f634.png

坐标变化

上述举例的单元的边界都是直线或平面,使用的是局部坐标系(也称为自然坐标系),此类单元称为母单元。形函数是在母单元中用自然坐标定义的。

母单元几何形状简单,便于运算,但难以适应实际工程中出现的各种复杂形状的结构。为了贴合比较复杂的结构外形,可以利用坐标变换,建立在整体坐标系下具有复杂外形的曲边单元,此类单元称为子单元。

经过坐标变换,单元具有双重特性:

(1)子单元的几何特征、载荷等,都来自实际结构,充分反映了实际情况;

(2)大量计算工作是在母单元中进行的,由于它形状简单且规则,运算方便。

为了进行坐标变换,必须在自然坐标系(ξ,η,ζ)和整体坐标系(x,y,z)之间建立一一对应的映射关系,这种对应关系也是通过形函数建立起来的。

在整体坐标系(x,y,z)中,子单元内任一点的坐标用形函数表示:

33f0052ef0e5bc6c9e0984f50a5d6f0f.png

回忆一下,形函数的另一个作用,反映单元的位移形态:

dc20e865b931e1e2dac4d4f1922dd59c.png

单元坐标变换公式和单元位移函数中都用到了形函数,它们可以是自然坐标下的一次、二次、三次、甚至更高次的函数。如果单元坐标变换公式和单元位移函数中所用的形函数的阶次相等,那么用于规定单元形状的结点数和用于规定单元位移的结点数应相等,这种单元称为等参数单元。

在等参数单元中,坐标变换和位移函数一般采用相同的结点。

一维单元的坐标变换,如下图所示:

e5186587aef12968c7354661b104f6b4.png

通过形函数,用结点位移定义单元内任一点的位移:

deaf33f68dcd0d5d26526d94ef33860b.png

单元应变为:

cb401d23d68e7c0223afea725d24d7bb.png

由于形函数是由局部坐标给出的,根据偏微分法则,可知:

7abd3fef1fe890833652584635e2f0bb.png

在整体坐标系中,子单元内任一点的坐标用形函数表示:

4b6dec402c9f31682c9495322ec834d7.png

所以:

dc8842dec2469c7c08cb15e38b32ef31.png

由此可求得矩阵[B]:

d9ea5705572d8f07ff2385466196b861.png

单元刚度矩阵的普遍公式为:

4c2b74a1d7ead7000a9ac580363e9e39.png

又因为:

9004f5f56e62f92608cdb1f7a6953083.png

所以:

850cc1ddd12998c8e87b712f88d3e003.png

二维单元的坐标变换,如下图所示:

dcafa3e8364918fcfe529dc61107c369.png

通过形函数,用结点位移定义单元内任一点的位移:

e7c65117842010346269227f54c1ea0d.png

单元应变为:

4d6833534d8dffa2fabd2267e50a3169.png

由于形函数是由局部坐标给出的,根据偏微分法则,可知:

4daa3c0fe2d3b0773574b65970d10df5.png

在整体坐标系中,子单元内任一点的坐标用形函数表示:

0d5ba94380da9154cd19dc352924b3c0.png

由此,可解得矩阵[Bi]:

f3164b6d8dae3e58d28ff9c03c625b75.png

由坐标变换公式,可直接解得雅克比矩阵:

3a9cc74d72fdacfd38273a6020793ee5.png

对其求逆后,得到形函数在整体坐标中的导数如下:

913cd74797316d81188e4e8fdddb2406.png

即可得到矩阵[Bi]。

三维单元的坐标变换,如下图所示:

e85579dbf5a5a3e0516003ff465113d3.png

通过形函数,用结点位移定义单元内任一点的位移:

4b8d57e15c641a5b5933b46c7bd7098a.png

单元应变为:

992e191e956ad161b2777c3c7da04ae5.png

由于形函数是由局部坐标给出的,根据偏微分法则,可知:

4ed5376e59ad171f63a2d03421efccfe.png

集合起来,得到:

74698c2604969cd39c6c22f15678ccfc.png

由于形函数是由局部坐标给出的,上式左端可根据Ni(ξ,η,ζ)直接求得。同时,由坐标变换公式求解雅克比矩阵:

e75a808134617689f2b64f8881ff4fe8.png

根据坐标变换公式,先计算出雅克比矩阵中的矩阵[j],这是各单元共用的。再把结点坐标代入上式,求得雅克比矩阵,并求逆后,得到形函数在整体坐标中的导数如下:

346faaa5d3e5673bcf21ed458d2164be.png

从而计算得到矩阵[Bi],进一步计算得到矩阵[B]。

令:

ea4ebcb9ffc12422d6eaf8ec61493e7c.png

矩阵分块后,子矩阵为:

f65ec475ff90be2fb1ac3b9794e5698e.png

又由于:

11e040933be7b7adc77f31b7968d0f20.png

可得到:

af4368d264366320f7def05a6bb1d91c.png

如果子单元的几何形状较为简单,如二维的矩形、三维的正六面体,可直接求出上式右端的积分并得到用显式表示的刚度矩阵。但一般情况下,子单元形状较为复杂,刚度矩阵难以用显式表示,必须依靠数值积分计算[krs]的值。

雅克比矩阵对单元应变有重要的影响。以简单的平面矩形单元为例:

4f2ba772b185ba1ca2fd085f8145a895.png

79b2b5ddeeaa150b96373cee3dab6f59.png

该单元的雅克比矩阵是个常数。

fe908a7552b415164d3bf609681fea8f.png

得到矩阵[Bi]:

2cb0432a9ef50da98f804b3d285b1e46.png

显然,单元内应变的变化规律取决于形函数的阶次。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值