目录
〇、相关知识铺垫
后面从第一章是正片开始,用到的相关知识写在这里,如果有需要可翻来查看。如不需要请直接跳到第一章开始正文。
0.1 拉氏变换
传送门:拉氏变换
【本文在第一章出现“拉氏变换”】
0.2 部分分式展开法
设 f ( x ) f(x) f(x) 为有理函数,且有 f ( x ) = P ( x ) Q ( x ) = ∏ i = 1 m ( x − x i ) r ∏ j = 1 n ( x − x j ) s f(x)=\frac{P(x)}{Q(x)}=\frac{\prod\limits_{i=1}^{m}\left(x-x_i\right)^r}{\prod\limits_{j=1}^{n}\left(x-x_j\right)^s} f(x)=Q(x)P(x)=j=1∏n(x−xj)si=1∏m(x−xi)r那么, f ( x ) f(x) f(x) 可以分解为: f ( x ) = ∑ P k − 1 ( x ) ( x − x i ) k f(x)=\sum\frac{P_{k-1}(x)}{(x-x_i)^k} f(x)=∑(x−xi)kPk−1(x)【本文在2.2节出现“部分分式展开法”】
0.3 长除法
就是小学我们学过的除法,只不过现在我们要推广到多项式中,如:
【本文在4.1节出现“长除法”】
0.4 常用的一些级数求和
∑
n
=
0
∞
x
n
=
1
1
−
x
(
∣
x
∣
<
1
)
\sum_{n=0}^{\infty}x^n=\frac{1}{1-x} \space\space\space \left(|x|<1\right)
n=0∑∞xn=1−x1 (∣x∣<1)
∑
n
=
0
∞
x
n
n
!
=
e
x
\sum_{n=0}^{\infty}\frac{x^n}{n!}={\rm e}^x
n=0∑∞n!xn=ex
∑
n
=
0
∞
x
n
+
1
n
+
1
=
−
ln
(
1
−
x
)
\sum_{n=0}^{\infty}\frac{x^{n+1}}{n+1}=-\ln{(1-x)}
n=0∑∞n+1xn+1=−ln(1−x)
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
(
2
n
+
1
)
!
=
sin
x
\sum_{n=0}^{\infty}\frac{(-1)^{n}x^{2n+1}}{(2n+1)!}=\sin{x}
n=0∑∞(2n+1)!(−1)nx2n+1=sinx
∑
n
=
0
∞
(
−
1
)
n
x
2
n
(
2
n
)
!
=
cos
x
\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{(2n)!}=\cos x
n=0∑∞(2n)!(−1)nx2n=cosx
【本文在2.1节出现“级数求和”】
0.5 留数
复变函数中的一个概念,在这里我们不展开详细说了,用到的公式很简单,在文章里用到的地方已经给出,直接套用即可。(如果把留数展开讲那得讲整个复变函数积分了。。。。所以咱们这里只用结论)【本文在2.3节出现“留数”】
0.6 叠分的概念
离散域中的“叠分”,类似于连续域中的“积分”,定义为
∑
i
=
1
n
f
(
i
)
\sum\limits_{i=1}^{n}f(i)
i=1∑nf(i)
【本文在3.9节出现“叠分”】
一、Z变换概念
如果一个函数 f ( t ) f(t) f(t) 可以做拉氏变换,则根据定义,有: F ( s ) = L [ f ( t ) ] = ∫ − ∞ + ∞ f ( t ) e − s t d t F(s)={\mathcal L}[f(t)]=\int_{-\infty}^{+\infty}f(t){\rm e}^{-st}dt F(s)=L[f(t)]=∫−∞+∞f(t)e−stdt设采样时间间隔为 T T T,则采样函数表示为: f ∗ ( t ) = ∑ k = 0 ∞ f ( k T ) δ ( t − k T ) f^*(t)=\sum_{k=0}^{\infty}f(kT)\delta(t-kT) f∗(t)=k=0∑∞f(kT)δ(t−kT)对采样函数进行拉氏变换,得: F ∗ ( s ) = L [ f ∗ ( t ) ] = ∫ − ∞ + ∞ f ∗ ( t ) e − s t d t F^*(s)={\mathcal L}[f^*(t)]=\int_{-\infty}^{+\infty}f^*(t){\rm e}^{-st}dt F∗(s)=L[f∗(t)]=∫−∞+∞f∗(t)e−stdt F ∗ ( s ) = ∫ − ∞ + ∞ [ ∑ k = 0 ∞ f ( k T ) δ ( t − k T ) ] e − s t d t = ∑ k = 0 ∞ f ( k T ) [ ∫ − ∞ + ∞ δ ( t − k T ) e − s t d t ] F^*(s)=\int_{-\infty}^{+\infty}\left[\sum_{k=0}^{\infty}f(kT)\delta(t-kT)\right]{\rm e}^{-st}dt=\sum_{k=0}^{\infty}f(kT)\left[\int_{-\infty}^{+\infty}\delta(t-kT){\rm e}^{-st}dt\right] F∗(s)=∫−∞+∞[k=0∑∞f(kT)δ(t−kT)]e−stdt=k=0∑∞f(kT)[∫−∞+∞δ(t−kT)e−stdt] F ∗ ( s ) = [ ∑ k = 0 ∞ f ( k T ) ] L [ δ ( t − k T ) ] = ∑ k = 0 ∞ f ( k T ) e − s k T F^*(s)=\left[\sum_{k=0}^{\infty}f(kT)\right]{\mathcal L}\left[\delta(t-kT)\right]=\sum_{k=0}^{\infty}f(kT){\rm e}^{-skT} F∗(s)=[k=0∑∞f(kT)]L[δ(t−kT)]=k=0∑∞f(kT)e−skT令 z = e s T z={\rm e}^{sT} z=esT,则: F ( z ) = ∑ k = 0 ∞ f ( k T ) z − k F(z)=\sum_{k=0}^{\infty}f(kT)z^{-k} F(z)=k=0∑∞f(kT)z−k这就是Z变换的定义式。记作: F ( z ) = Z [ f ( t ) ] = ∑ k = 0 ∞ f ( k T ) z − k F(z)={\mathcal Z}\left[f(t)\right]=\sum_{k=0}^{\infty}f(kT)z^{-k} F(z)=Z[f(t)]=k=0∑∞f(kT)z−k
Z变换定义式具有明显的意义。它表示第 k k k 次采样时,信号强度为 f ( k T ) f(kT) f(kT)。所谓 “第 k k k 个采样时刻”,指的是相对初始时刻滞后 k k k 拍。(这个意义在第四章4.1节会用到)
常用 Z 变换表:
时域 | 复域拉氏变换 | Z域Z变换 |
---|---|---|
δ ( t ) \delta(t) δ(t) | 1 | 1 |
δ ( t − k T ) \delta(t-kT) δ(t−kT) | e k T s ^{kTs} kTs | z − k z^{-k} z−k |
1 ( t ) 1(t) 1(t) | 1 s \frac{1}{s} s1 | 1 1 − z − 1 \frac{1}{1-z^{-1}} 1−z−11 |
t t t | 1 s 2 \frac{1}{s^2} s21 | T z − 1 ( 1 − z − 1 ) 2 \frac{Tz^{-1}}{(1-z^{-1})^2} (1−z−1)2Tz−1 |
t 2 2 \frac{t^2}{2} 2t2 | 1 s 3 \frac{1}{s^3} s31 | T 2 z − 1 ( 1 + z − 1 ) 2 ( 1 − z − 1 ) 3 \frac{T^2z^{-1}(1+z^{-1})}{2(1-z^{-1})^3} 2(1−z−1)3T2z−1(1+z−1) |
e − a t ^{-at} −at | 1 s + a \frac{1}{s+a} s+a1 | 1 1 − e − a T z − 1 \frac{1}{1-{\rm e}^{-aT}z^{-1}} 1−e−aTz−11 |
a k a^k ak | 1 1 − a z − 1 \frac{1}{1-az^{-1}} 1−az−11 | |
A k a k − 1 Aka^{k-1} Akak−1 | A z ( z − a ) 2 \frac{Az}{(z-a)^2} (z−a)2Az | |
t e − a t t{\rm e}^{-at} te−at | 1 ( s + a ) 2 \frac{1}{(s+a)^2} (s+a)21 | T e − a T z − 1 ( 1 − e − a T z − 1 ) 2 \frac{T{\rm e}^{-aT}z^{-1}}{(1-{\rm e}^{-aT}z^{-1})^2} (1−e−aTz−1)2Te−aTz−1 |
二、Z变换方法
2.1 级数求和法
求指数衰减函数
f
(
t
)
=
{
0
,
t
<
0
e
−
a
t
,
t
≥
0
f(t)= \left\{ \begin{array}{c} 0,\space t<0 \\ {\rm e}^{-at},\space t\geq0 \\ \end{array} \right.
f(t)={0, t<0e−at, t≥0的Z变换。
解:
F
(
z
)
=
∑
k
=
0
∞
f
(
k
T
)
z
−
k
=
∑
k
=
0
∞
e
−
a
k
T
z
−
k
F(z)=\sum_{k=0}^{\infty}f(kT)z^{-k}=\sum_{k=0}^{\infty}{\rm e}^{-akT}z^{-k}
F(z)=k=0∑∞f(kT)z−k=k=0∑∞e−akTz−k
F
(
z
)
=
1
+
e
−
a
T
z
−
1
+
e
−
2
a
T
z
−
2
+
⋯
+
e
−
a
n
T
z
−
n
+
⋯
F(z)=1+{\rm e}^{-aT}z^{-1}+{\rm e}^{-2aT}z^{-2}+\cdots+{\rm e}^{-anT}z^{-n}+\cdots
F(z)=1+e−aTz−1+e−2aTz−2+⋯+e−anTz−n+⋯
e
−
a
T
z
−
1
F
(
z
)
=
e
−
a
T
z
−
1
+
e
−
2
a
T
z
−
2
+
e
−
3
a
T
z
−
3
+
⋯
+
e
−
a
(
n
+
1
)
T
z
−
(
n
+
1
)
+
⋯
{\rm e}^{-aT}z^{-1}F(z)={\rm e}^{-aT}z^{-1}+{\rm e}^{-2aT}z^{-2}+{\rm e}^{-3aT}z^{-3}+\cdots+{\rm e}^{-a(n+1)T}z^{-(n+1)}+\cdots
e−aTz−1F(z)=e−aTz−1+e−2aTz−2+e−3aTz−3+⋯+e−a(n+1)Tz−(n+1)+⋯
相减,得:
(
1
−
e
−
a
T
z
−
1
)
F
(
z
)
=
1
\left(1-{\rm e}^{-aT}z^{-1}\right)F(z)=1
(1−e−aTz−1)F(z)=1于是:
F
(
z
)
=
1
1
−
e
−
a
T
z
−
1
F(z)=\frac{1}{1-{\rm e}^{-aT}z^{-1}}
F(z)=1−e−aTz−11
2.2 部分分式展开法
举例:求
F
(
s
)
=
s
+
a
(
s
+
b
)
2
(
s
+
c
)
F(s)=\frac{s+a}{(s+b)^2(s+c)}
F(s)=(s+b)2(s+c)s+a的
z
z
z 变换
F
(
z
)
F(z)
F(z)。
解:
F
(
s
)
=
A
(
s
+
b
)
2
+
B
s
+
b
+
C
s
+
c
F(s)=\frac{A}{(s+b)^2}+\frac{B}{s+b}+\frac{C}{s+c}
F(s)=(s+b)2A+s+bB+s+cC
两边同乘以
(
s
+
b
)
2
(s+b)^2
(s+b)2,得:
(
s
+
b
)
2
F
(
s
)
=
A
+
B
(
s
+
b
)
+
C
(
s
+
b
)
2
s
+
c
(s+b)^2F(s)=A+B(s+b)+\frac{C(s+b)^2}{s+c}
(s+b)2F(s)=A+B(s+b)+s+cC(s+b)2即:
s
+
a
s
+
c
=
A
+
B
(
s
+
b
)
+
C
(
s
+
b
)
2
s
+
c
\frac{s+a}{s+c}=A+B(s+b)+\frac{C(s+b)^2}{s+c}
s+cs+a=A+B(s+b)+s+cC(s+b)2令
s
=
−
b
s = -b
s=−b,得:
A
=
a
−
b
c
−
b
A=\frac{a-b}{c-b}
A=c−ba−b同理,两边同乘以
s
+
c
s+c
s+c,得:
(
s
+
c
)
F
(
s
)
=
s
+
a
(
s
+
b
)
2
=
A
(
s
+
c
)
(
s
+
b
)
2
+
B
(
s
+
c
)
s
+
b
+
C
(s+c)F(s)=\frac{s+a}{(s+b)^2}=\frac{A(s+c)}{(s+b)^2}+\frac{B(s+c)}{s+b}+C
(s+c)F(s)=(s+b)2s+a=(s+b)2A(s+c)+s+bB(s+c)+C令
s
=
−
c
s=-c
s=−c,得:
C
=
a
−
c
(
b
−
c
)
2
C=\frac{a-c}{(b-c)^2}
C=(b−c)2a−c 再令
s
=
0
s=0
s=0,得:
B
=
c
−
a
(
c
−
b
)
2
B=\frac{c-a}{(c-b)^2}
B=(c−b)2c−a所以
F
(
s
)
F(s)
F(s) 的
Z
Z
Z 变换为:
F
(
z
)
=
a
−
b
c
−
b
T
e
−
b
T
z
−
1
(
1
−
e
−
b
T
z
−
1
)
2
+
c
−
a
(
c
−
b
)
2
1
1
−
e
−
b
T
z
−
1
+
a
−
c
(
b
−
c
)
2
1
1
−
e
−
c
T
z
−
1
F(z)=\frac{a-b}{c-b}\frac{T{\rm e}^{-bT}z^{-1}}{(1-{\rm e}^{-bT}z^{-1})^2}+\frac{c-a}{(c-b)^2}\frac{1}{1-{\rm e}^{-bT}z^{-1}}+\frac{a-c}{(b-c)^2}\frac{1}{1-{\rm e}^{-cT}z^{-1}}
F(z)=c−ba−b(1−e−bTz−1)2Te−bTz−1+(c−b)2c−a1−e−bTz−11+(b−c)2a−c1−e−cTz−11
2.3 留数法
设
F
(
s
)
F(s)
F(s) 有若干 m 个不同极点
s
i
s_i
si,则:
F
(
z
)
=
∑
i
=
1
m
R
e
s
[
F
(
s
i
)
z
z
−
e
s
i
T
]
F(z)=\sum_{i=1}^m{\rm Res}\left[F(s_i)\frac{z}{z-{\rm e}^{s_iT}}\right]
F(z)=i=1∑mRes[F(si)z−esiTz]其中,对于单极点的
s
i
s_i
si:
R
e
s
[
F
(
s
i
)
z
z
−
e
s
i
T
]
=
[
(
s
−
s
i
)
F
(
s
)
z
z
−
e
s
T
]
s
=
s
i
{\rm Res}\left[F(s_i)\frac{z}{z-{\rm e}^{s_iT}}\right]=\left[(s-s_i)F(s)\frac{z}{z-{\rm e}^{sT}}\right]_{s=s_i}
Res[F(si)z−esiTz]=[(s−si)F(s)z−esTz]s=si对于
n
n
n 重极点的
s
i
s_i
si:
R
e
s
[
F
(
s
i
)
z
z
−
e
s
i
T
]
=
1
(
n
−
1
)
!
d
n
−
1
d
s
n
−
1
[
(
s
−
s
i
)
n
F
(
s
)
z
z
−
e
s
T
]
s
=
s
i
{\rm Res}\left[F(s_i)\frac{z}{z-{\rm e}^{s_iT}}\right]=\frac{1}{(n-1)!}\frac{{\rm d}^{n-1}}{{\rm d}s^{n-1}}\left[(s-s_i)^nF(s)\frac{z}{z-{\rm e}^{sT}}\right]_{s=s_i}
Res[F(si)z−esiTz]=(n−1)!1dsn−1dn−1[(s−si)nF(s)z−esTz]s=si
【例子】:
F
(
s
)
=
s
+
3
(
s
+
2
)
2
(
s
+
1
)
F(s)=\frac{s+3}{(s+2)^2(s+1)}
F(s)=(s+2)2(s+1)s+3共有 2 个不同的极点,其中 -2 为二重极点,所以
m
=
n
=
2
,
s
1
,
2
=
−
2
,
s
3
=
−
1
m = n = 2, s_{1,2}=-2,s_3=-1
m=n=2,s1,2=−2,s3=−1,所以:
F
1
(
z
)
=
1
(
2
−
1
)
!
d
d
s
[
(
s
+
2
)
2
s
+
3
(
s
+
2
)
2
(
s
+
1
)
z
z
−
e
s
T
]
s
=
−
2
=
d
d
s
[
s
z
+
3
z
s
z
−
s
e
s
T
+
z
−
e
s
T
]
s
=
−
2
=
[
z
(
s
z
−
s
e
s
T
+
z
−
e
s
T
)
−
(
s
z
+
3
z
)
(
z
−
e
s
T
−
T
s
e
s
T
−
T
e
s
T
)
(
s
z
−
s
e
s
T
+
z
−
e
s
T
)
2
]
s
=
−
2
=
(
2
−
T
)
e
−
2
T
z
−
2
z
2
(
z
−
e
−
2
T
)
2
F_1(z)=\frac{1}{(2-1)!}\frac{{\rm d}}{{\rm d}s}\left[(s+2)^2\frac{s+3}{(s+2)^2(s+1)}\frac{z}{z-{\rm e}^{sT}}\right]_{s=-2} \\\space \\ =\frac{{\rm d}}{{\rm d}s}\left[\frac{sz+3z}{sz-s{\rm e}^{sT}+z-{\rm e}^{sT}}\right]_{s=-2}\\\space \\ =\left[\frac{z(sz-s{\rm e}^{sT}+z-{\rm e}^{sT})-(sz+3z)(z-{\rm e}^{sT}-Ts{\rm e}^{sT}-T{\rm e}^{sT})}{(sz-s{\rm e}^{sT}+z-{\rm e}^{sT})^2}\right]_{s=-2}\\\space\\=\frac{(2-T){\rm e}^{-2T}z-2z^2}{(z-{\rm e}^{-2T})^2}
F1(z)=(2−1)!1dsd[(s+2)2(s+2)2(s+1)s+3z−esTz]s=−2 =dsd[sz−sesT+z−esTsz+3z]s=−2 =[(sz−sesT+z−esT)2z(sz−sesT+z−esT)−(sz+3z)(z−esT−TsesT−TesT)]s=−2 =(z−e−2T)2(2−T)e−2Tz−2z2
F
2
(
z
)
=
[
(
s
+
1
)
s
+
3
(
s
+
2
)
2
(
s
+
1
)
z
z
−
e
s
T
]
s
=
−
1
=
2
z
z
−
e
−
T
F_2(z)=\left[(s+1)\frac{s+3}{(s+2)^2(s+1)}\frac{z}{z-{\rm e}^{sT}}\right]_{s=-1}=\frac{2z}{z-{\rm e}^{-T}}
F2(z)=[(s+1)(s+2)2(s+1)s+3z−esTz]s=−1=z−e−T2z
所以
F
(
s
)
F(s)
F(s) 的
Z
Z
Z 变换为:
F
(
z
)
=
(
2
−
T
)
e
−
2
T
z
−
2
z
2
(
z
−
e
−
2
T
)
2
+
2
z
z
−
e
−
T
F(z) = \frac{(2-T){\rm e}^{-2T}z-2z^2}{(z-{\rm e}^{-2T})^2}+\frac{2z}{z-{\rm e}^{-T}}
F(z)=(z−e−2T)2(2−T)e−2Tz−2z2+z−e−T2z
三、Z变换的基本性质和定理
以下设 Z [ f ( t ) ] = F ( z ) {\mathcal Z}[f(t)] = F(z) Z[f(t)]=F(z), Z [ f 1 ( t ) ] = F 1 ( z ) {\mathcal Z}[f_1(t)]=F_1(z) Z[f1(t)]=F1(z), Z [ f 2 ( t ) ] = F 2 ( z ) {\mathcal Z}[f_2(t)]=F_2(z) Z[f2(t)]=F2(z)
3.1 线性性
Z [ k 1 f 1 ( t ) ± k 2 f 2 ( t ) ] = k 1 F 1 ( z ) ± k 2 F 2 ( z ) {\mathcal Z}[k_1f_1(t)\pm k_2f_2(t)]=k_1F_1(z)\pm k_2F_2(z) Z[k1f1(t)±k2f2(t)]=k1F1(z)±k2F2(z)
3.2 超前定理
Z [ f ( t + n T ) ] = z n [ F ( z ) − ∑ j = 0 n − 1 f ( j T ) z − j ] {\mathcal Z}[f(t+nT)]=z^n\left[F(z)-\sum_{j=0}^{n-1}f(jT)z^{-j}\right] Z[f(t+nT)]=zn[F(z)−j=0∑n−1f(jT)z−j]
3.3 迟滞定理
Z [ f ( t − n T ) ] = z − n F ( z ) {\mathcal Z}[f(t-nT)]=z^{-n}F(z) Z[f(t−nT)]=z−nF(z)
3.4 初值定理
f ( 0 ) = lim z → ∞ F ( z ) f(0)=\lim_{z\to\infty}F(z) f(0)=z→∞limF(z)
3.5 终值定理
注意:是 “终值定理”,不是 “中值定理”,拉氏变换也是 “终值定理”,非 “中值定理”。“中值定理” 是数学上的概念,表示某函数在某区间内,存在一个属于该区间内的值,使得函数满足函数值随导数值变化而变化这一本质规律,从而表现出来的一些性质,如拉格朗日中值定理。而 “终值定理”,是揭示当时间趋向于无穷时,系统表现出来的响应状态,反映出系统的稳态性能。
f
(
∞
)
=
lim
t
→
∞
f
(
t
)
=
lim
k
→
∞
f
(
k
T
)
=
lim
z
→
1
(
1
−
z
−
1
)
F
(
z
)
f(\infty)=\lim_{t\to\infty}f(t)=\lim_{k\to\infty}f(kT)=\lim_{z\to1}(1-z^{-1})F(z)
f(∞)=t→∞limf(t)=k→∞limf(kT)=z→1lim(1−z−1)F(z)
3.6 复位移定理
Z [ e ± a t f ( t ) ] = F ( z e ∓ a T ) {\mathcal Z}\left[{\rm e}^{\pm at}f(t)\right]=F(z{\rm e}^{\mp aT}) Z[e±atf(t)]=F(ze∓aT)
3.7 复微分定理
Z [ t f ( t ) ] = − T z d F ( z ) d z {\mathcal Z}\left[tf(t)\right]=-Tz\frac{{\rm d}F(z)}{dz} Z[tf(t)]=−TzdzdF(z)
3.8 复积分定理
Z [ f ( t ) t ] = ∫ z ∞ F ( z ) T z d z + lim t → 0 f ( t ) t {\mathcal Z}\left[\frac{f(t)}{t}\right]=\int_z^\infty \frac{F(z)}{Tz}{\rm d}z+\lim_{t\to 0}\frac{f(t)}{t} Z[tf(t)]=∫z∞TzF(z)dz+t→0limtf(t)
3.9 叠分定理
设 g ( k ) = ∑ i = 1 k f ( i ) ( k ∈ Z ) g(k)=\sum_{i=1}^kf(i)\space\space\space(k\in Z) g(k)=i=1∑kf(i) (k∈Z)则: G ( z ) = Z [ g ( k ) ] = z z − 1 F ( z ) G(z)={\mathcal Z}\left[g(k)\right]=\frac{z}{z-1}F(z) G(z)=Z[g(k)]=z−1zF(z)
3.10 卷积定理
Z [ f 1 ( k ) ∗ f 2 ( k ) ] = F 1 ( z ) F 2 ( z ) {\mathcal Z}\left[f_1(k)*f_2(k)\right]=F_1(z)F_2(z) Z[f1(k)∗f2(k)]=F1(z)F2(z)其中: f 1 ( k ) ∗ f 2 ( k ) = ∑ i = 1 k f 1 ( k − i ) f 2 ( i ) = ∑ i = 1 ∞ f 1 ( k − i ) f 2 ( i ) f_1(k)*f_2(k)=\sum_{i=1}^kf_1(k-i)f_2(i)=\sum_{i=1}^\infty f_1(k-i)f_2(i) f1(k)∗f2(k)=i=1∑kf1(k−i)f2(i)=i=1∑∞f1(k−i)f2(i)显然,上式中 f 1 ( k ) f_1(k) f1(k) 和 f 2 ( k ) f_2(k) f2(k) 存在可交换性。
四、Z反变换方法
4.1 长除法
由前述知,Z 变换可以表示为一个真分式形式:
F
(
z
)
=
K
(
z
m
+
b
1
z
m
−
1
+
b
2
z
m
−
2
+
⋯
+
b
m
−
1
z
+
b
m
)
z
n
+
a
1
z
n
−
1
+
a
2
z
n
−
2
⋯
+
a
n
−
1
z
+
a
n
(
m
≤
n
)
F(z)=\frac{K(z^m+b_{1}z^{m-1}+b_{2}z^{m-2}+\cdots+b_{m-1}z+b_m)}{z^n+a_{1}z^{n-1}+a_2z^{n-2}\cdots+a_{n-1}z+a_n}\space\space\space(m\leq n)
F(z)=zn+a1zn−1+a2zn−2⋯+an−1z+anK(zm+b1zm−1+b2zm−2+⋯+bm−1z+bm) (m≤n)也可以使用负幂表示:
F
(
z
)
=
K
z
−
(
n
−
m
)
(
1
+
b
1
z
−
1
+
b
2
z
−
2
+
⋯
+
b
m
−
1
z
−
(
m
−
1
)
+
b
m
z
−
m
)
1
+
a
1
z
−
1
+
a
2
z
−
2
+
⋯
+
a
n
−
1
z
−
(
n
−
1
)
+
a
n
z
−
n
F(z)=\frac{Kz^{-(n-m)}(1+b_1z^{-1}+b_2z^{-2}+\cdots+b_{m-1}z^{-(m-1)}+b_mz^{-m})}{1+a_1z^{-1}+a_2z^{-2}+\cdots+a_{n-1}z^{-(n-1)}+a_nz^{-n}}
F(z)=1+a1z−1+a2z−2+⋯+an−1z−(n−1)+anz−nKz−(n−m)(1+b1z−1+b2z−2+⋯+bm−1z−(m−1)+bmz−m)使用长除法可得:
F
(
z
)
=
∑
k
=
0
∞
f
(
k
T
)
z
−
k
=
f
(
0
)
+
f
(
1
T
)
z
−
1
+
f
(
2
T
)
z
−
2
+
⋯
+
f
(
n
T
)
z
−
n
+
⋯
F(z)=\sum_{k=0}^{\infty}f(kT)z^{-k}=f(0)+f(1T)z^{-1}+f(2T)z^{-2}+\cdots+f(nT)z^{-n}+\cdots
F(z)=k=0∑∞f(kT)z−k=f(0)+f(1T)z−1+f(2T)z−2+⋯+f(nT)z−n+⋯
第一章已经说过 Z 变换具有明显的实际意义。所以通过上式,可以直接写出:
f
∗
(
t
)
=
f
(
0
)
+
f
(
1
T
)
δ
(
t
−
T
)
+
f
(
2
T
)
δ
(
t
−
2
T
)
+
⋯
+
f
(
n
T
)
δ
(
t
−
n
T
)
+
⋯
f^*(t)=f(0)+f(1T)\delta(t-T)+f(2T)\delta(t-2T)+\cdots+f(nT)\delta(t-nT)+\cdots
f∗(t)=f(0)+f(1T)δ(t−T)+f(2T)δ(t−2T)+⋯+f(nT)δ(t−nT)+⋯
长除法的优点在于它意义明显,方便简洁,长除法是小学就学过的运算方法,而得到的
F
(
z
)
F(z)
F(z) 也能很直接地写出对应的离散采样函数。
但是长除法不能使用有限项来描述,往往得到的 f ∗ ( t ) f^*(t) f∗(t) 是一个无穷多项的序列。实际应用中,一般取n个有限项来逼近,n取决于从第几项开始,序列能够满足要求(如跟踪误差、动态响应等等)
4.2 部分分式展开法
F ( z ) F(z) F(z)可以表示为: F ( z ) = ∑ j = 0 m b j z m − j ∏ i = 1 n ( z − z i ) r i F(z)=\frac{\sum\limits_{j=0}^mb_jz^{m-j}}{\prod\limits_{i=1}^n(z-z_i)^{r_i}} F(z)=i=1∏n(z−zi)rij=0∑mbjzm−j其中,分子是一个多项式,分母是因式分解为若干极点乘积的形式。
对于
l
1
l_1
l1 个单极点的情况,将单极点项分解为:
F
1
(
z
)
=
∑
i
=
1
l
1
K
i
z
d
z
−
z
i
F_1(z)=\sum_{i=1}^{l_1}\frac{K_iz^d}{z-z_i}
F1(z)=i=1∑l1z−ziKizd
对于含有
l
2
l_2
l2 个二重极点
z
j
z_j
zj 的项,分解为:
F
2
(
z
)
=
∑
j
=
1
l
2
[
K
j
1
z
d
(
z
−
z
j
)
2
+
K
j
2
z
d
z
−
z
j
]
F_2(z)=\sum_{j=1}^{l_2}\left[\frac{K_{j1}z^d}{(z-z_j)^2}+\frac{K_{j2}z^d}{z-z_j}\right]
F2(z)=j=1∑l2[(z−zj)2Kj1zd+z−zjKj2zd]
请注意,如果 m ≥ 1 m \geq 1 m≥1,这里的分子是一次式!即 d = 1 d=1 d=1,如果 m = 0 m = 0 m=0,这里 d = 0 d=0 d=0
由第一章给出的 Z 变换表,得:
f
1
(
k
T
)
=
∑
i
=
1
l
1
K
i
z
i
k
f_1(kT)=\sum_{i=1}^{l_1}K_iz_i^k
f1(kT)=i=1∑l1Kizik
对于二重极点
z
j
z_j
zj,有:
f
2
(
k
T
)
=
K
1
k
z
j
k
−
1
+
K
2
z
j
k
f_2(kT)=K_1kz_j^{k-1}+K_2z_j^{k}
f2(kT)=K1kzjk−1+K2zjk
所以:
f
∗
(
t
)
=
∑
k
=
0
∞
[
f
1
(
k
T
)
+
f
2
(
k
T
)
]
δ
(
t
−
k
T
)
f^*(t)=\sum_{k=0}^{\infty}\left[f_1(kT)+f_2(kT)\right]\delta(t-kT)
f∗(t)=k=0∑∞[f1(kT)+f2(kT)]δ(t−kT)
因为高次重极点可以分解为若干单极点和二重极点乘积的形式,所以不再赘述。
【例子】:
F
(
z
)
=
z
(
z
−
3
)
2
(
z
−
1
)
F(z)=\frac{z}{(z-3)^2(z-1)}
F(z)=(z−3)2(z−1)z求反变换。
分解为:
F
(
z
)
=
K
1
z
z
−
1
+
K
2
z
(
z
−
3
)
2
+
K
3
z
z
−
3
F(z)=\frac{K_1z}{z-1}+\frac{K_2z}{(z-3)^2}+\frac{K_3z}{z-3}
F(z)=z−1K1z+(z−3)2K2z+z−3K3z按部分分式展开法求解系数为:
K
1
=
1
4
K_1=\frac{1}{4}
K1=41,
K
2
=
1
2
K_2=\frac{1}{2}
K2=21,
K
3
=
−
1
4
K_3=-\frac{1}{4}
K3=−41,所以:
F
(
z
)
=
1
4
z
z
−
1
+
1
2
z
(
z
−
3
)
2
−
1
4
z
z
−
3
F(z) = \frac{1}{4}\frac{z}{z-1}+\frac{1}{2}\frac{z}{(z-3)^2}-\frac{1}{4}\frac{z}{z-3}
F(z)=41z−1z+21(z−3)2z−41z−3z由 Z 变换表,可得:
f
(
k
T
)
=
1
4
+
k
2
3
k
−
1
−
1
4
3
k
=
1
4
+
2
k
−
3
12
3
k
f(kT)=\frac{1}{4}+\frac{k}{2}3^{k-1}-\frac{1}{4}3^k=\frac{1}{4}+\frac{2k-3}{12}3^k
f(kT)=41+2k3k−1−413k=41+122k−33k所以:
f
∗
(
t
)
=
∑
k
=
0
∞
[
1
4
+
2
k
−
3
12
3
k
]
δ
(
t
−
k
T
)
f^*(t)=\sum_{k=0}^{\infty}\left[\frac{1}{4}+\frac{2k-3}{12}3^k\right]\delta(t-kT)
f∗(t)=k=0∑∞[41+122k−33k]δ(t−kT)
4.3 留数法
设
F
(
z
)
F(z)
F(z) 含有
m
m
m 个极点
z
i
z_i
zi ,则:
f
(
k
T
)
=
∑
i
=
1
m
R
e
s
[
F
(
z
)
z
k
−
1
]
z
=
z
i
f(kT)=\sum_{i=1}^m{\rm Res}\left[F(z)z^{k-1}\right]_{z=z_i}
f(kT)=i=1∑mRes[F(z)zk−1]z=zi那么留数分两种情况:
(1)对于单极点
z
i
z_i
zi:
R
e
s
[
F
(
z
)
z
k
−
1
]
z
=
z
i
=
[
(
z
−
z
i
)
F
(
z
)
z
k
−
1
]
z
=
z
i
{\rm Res}\left[F(z)z^{k-1}\right]_{z=z_i}=\left[(z-z_i)F(z)z^{k-1}\right]_{z=z_i}
Res[F(z)zk−1]z=zi=[(z−zi)F(z)zk−1]z=zi
(2)对于
n
n
n 重极点
z
i
z_i
zi:
R
e
s
[
F
(
z
)
z
k
−
1
]
z
=
z
i
=
1
(
n
−
1
)
!
d
n
−
1
d
z
n
−
1
[
(
z
−
z
i
)
n
F
(
z
)
z
k
−
1
]
z
=
z
i
{\rm Res}\left[F(z)z^{k-1}\right]_{z=z_i}=\frac{1}{(n-1)!} \frac{{\rm d}^{n-1}}{{\rm d}z^{n-1}}\left[(z-z_i)^nF(z)z^{k-1}\right]_{z=z_i}
Res[F(z)zk−1]z=zi=(n−1)!1dzn−1dn−1[(z−zi)nF(z)zk−1]z=zi
【例子】:还是考虑在“部分分式展开法”中的例子:
F
(
z
)
=
z
(
z
−
3
)
2
(
z
−
1
)
F(z)=\frac{z}{(z-3)^2(z-1)}
F(z)=(z−3)2(z−1)z 显然,
F
(
z
)
F(z)
F(z) 有二重极点
z
1
,
2
=
3
z_{1,2}=3
z1,2=3,有单极点
z
3
=
1
z_3=1
z3=1
对于二重极点:
R
e
s
[
F
(
z
)
z
k
−
1
]
z
=
3
=
1
(
2
−
1
)
!
d
d
z
[
(
z
−
3
)
2
F
(
z
)
z
k
−
1
]
z
=
3
{\rm Res}\left[F(z)z^{k-1}\right]_{z=3}=\frac{1}{(2-1)!}\frac{{\rm d}}{{\rm d}z}\left[(z-3)^2F(z)z^{k-1}\right]_{z=3}
Res[F(z)zk−1]z=3=(2−1)!1dzd[(z−3)2F(z)zk−1]z=3即:
R
e
s
[
F
(
z
)
z
k
−
1
]
z
=
3
=
d
d
z
[
z
k
z
−
1
]
z
=
3
=
(
k
6
−
1
4
)
3
k
{\rm Res}\left[F(z)z^{k-1}\right]_{z=3}=\frac{{\rm d}}{{\rm d}z}\left[\frac{z^k}{z-1}\right]_{z=3}=(\frac{k}{6}-\frac{1}{4})3^k
Res[F(z)zk−1]z=3=dzd[z−1zk]z=3=(6k−41)3k对于单极点:
R
e
s
[
F
(
z
)
z
k
−
1
]
z
=
1
=
[
(
z
−
1
)
F
(
z
)
z
k
−
1
]
z
=
1
{\rm Res}\left[F(z)z^{k-1}\right]_{z=1}=\left[(z-1)F(z)z^{k-1}\right]_{z=1}
Res[F(z)zk−1]z=1=[(z−1)F(z)zk−1]z=1即:
R
e
s
[
F
(
z
)
z
k
−
1
]
z
=
1
=
[
z
k
(
z
−
3
)
2
]
z
=
1
=
1
4
{\rm Res}\left[F(z)z^{k-1}\right]_{z=1}=\left[\frac{z^k}{(z-3)^2}\right]_{z=1}=\frac{1}{4}
Res[F(z)zk−1]z=1=[(z−3)2zk]z=1=41所以:
f
(
k
T
)
=
(
k
6
−
1
4
)
3
k
+
1
4
=
2
k
−
3
12
3
k
+
1
4
f(kT)=(\frac{k}{6}-\frac{1}{4})3^k+\frac{1}{4}=\frac{2k-3}{12}3^k+\frac{1}{4}
f(kT)=(6k−41)3k+41=122k−33k+41于是:
f
∗
(
t
)
=
∑
k
=
0
∞
[
1
4
+
2
k
−
3
12
3
k
]
δ
(
t
−
k
T
)
f^*(t)=\sum_{k=0}^{\infty}\left[\frac{1}{4}+\frac{2k-3}{12}3^k\right]\delta(t-kT)
f∗(t)=k=0∑∞[41+122k−33k]δ(t−kT)
五、扩展Z变换
5.1 概念
F ( z ) F(z) F(z) 虽然反映了连续信号 f ( t ) f(t) f(t) 在采样时刻的信号情况,但是采样时刻是间断的,相邻两个采样时刻之间的函数变化情况无法通过 F ( z ) F(z) F(z) 表现出来。一般情况下,由于采样频率很高,相邻两个采样点之间的间隔极短,往往不会在意,但有时如果确想知道这个“极短”时间内信号的情况,普通Z变化是做不了的,而扩展Z变化就是为了解决这个问题。
请想,如果采样间隔
T
=
1
s
T=1{\rm s}
T=1s , 如果要反映在 0.5s 1.5s ……的情况,怎么实现呢?一个很简单的思路就是,既然以前是在 0s 1s 2s …… 采样,那我如果将这个时间序列滞后0.5s,是不是就可以得到0.5 1.5 ……时刻的情况了呢?事实上,采样时刻往往是设定的,一般不通过滞后采样时间来实现,通常通过把
f
(
t
)
f(t)
f(t) 滞后一段时间,这样原来采样时应当采到的信号便会滞后一个时间,从而得到信号序列。
【刘建昌,计算机控制技术[M]】
5.2 定义
假定要延迟的时长为 λ T \lambda T λT,这个延时时间可以看做延迟一个整周期 T T T,再超前 ( 1 − λ ) T (1-\lambda) T (1−λ)T
记: F ( z , m ) = Z m [ f ( t ) ] = Z [ f ( t − λ T ) ] F(z,m)={\mathcal Z}_m\left[f(t)\right] = {\mathcal Z}\left[f(t-\lambda T)\right] F(z,m)=Zm[f(t)]=Z[f(t−λT)],其中, λ = 1 − m \lambda=1-m λ=1−m
那么:
Z
[
f
(
t
−
λ
T
)
]
=
f
(
m
T
)
z
−
1
+
f
(
T
+
m
T
)
z
−
2
+
f
(
2
T
+
m
T
)
z
−
3
+
⋯
{\mathcal Z}\left[f(t-\lambda T)\right]=f(mT)z^{-1}+f(T+mT)z^{-2}+f(2T+mT)z^{-3}+\cdots
Z[f(t−λT)]=f(mT)z−1+f(T+mT)z−2+f(2T+mT)z−3+⋯提出公因子
z
−
1
z^{-1}
z−1 ,得:
Z
[
f
(
t
−
λ
T
)
]
=
z
−
1
[
f
(
m
T
)
+
f
(
T
+
m
T
)
z
−
1
+
f
(
2
T
+
m
T
)
z
−
2
+
⋯
]
{\mathcal Z}\left[f(t-\lambda T)\right]=z^{-1}\left[f(mT)+f(T+mT)z^{-1}+f(2T+mT)z^{-2}+\cdots\right]
Z[f(t−λT)]=z−1[f(mT)+f(T+mT)z−1+f(2T+mT)z−2+⋯]所以:
Z
[
f
(
t
−
λ
T
)
]
=
z
−
1
∑
k
=
0
∞
f
(
m
T
+
k
T
)
z
−
k
=
z
−
1
Z
[
f
(
k
T
+
m
T
)
]
=
z
−
1
Z
[
f
(
(
k
+
1
−
λ
)
T
)
]
{\mathcal Z}\left[f(t-\lambda T)\right]=z^{-1}\sum_{k=0}^{\infty}f(mT+kT)z^{-k}=z^{-1}{\mathcal Z}\left[f(kT+mT)\right]=z^{-1}{\mathcal Z}\left[f((k+1-\lambda)T)\right]
Z[f(t−λT)]=z−1k=0∑∞f(mT+kT)z−k=z−1Z[f(kT+mT)]=z−1Z[f((k+1−λ)T)]
可以注意到,这个式子有明显的物理意义:
z
−
1
z^{-1}
z−1 表示滞后一个整周期,
m
T
mT
mT 表示在这个基础上再超前
m
m
m 个
T
T
T,就达到了滞后
λ
T
\lambda T
λT 的效果。
5.3 一些结论
设系统传递函数为 F ( s ) F(s) F(s),则:
- F ( z , m ) = z − 1 Z [ F ( s ) e m T s ] F(z,m)=z^{-1}{\mathcal Z}\left[F(s){\rm e}^{mTs}\right] F(z,m)=z−1Z[F(s)emTs]
证明: F ( z , m ) = Z m [ F ( s ) ] = Z [ F ( s ) e − λ T s ] = Z [ F ( s ) e − T s + ( T − λ T ) s ] = Z [ F ( s ) e m T s ] F(z,m)={\mathcal Z}_m\left[F(s)\right]={\mathcal Z}\left[F(s){\rm e}^{-\lambda Ts}\right]={\mathcal Z}\left[F(s){\rm e}^{-Ts+(T-\lambda T)s}\right]={\mathcal Z}\left[F(s){\rm e}^{mTs}\right] F(z,m)=Zm[F(s)]=Z[F(s)e−λTs]=Z[F(s)e−Ts+(T−λT)s]=Z[F(s)emTs]
- m = 0 m=0 m=0 时, F ( z , 0 ) = z − 1 ∑ k = 0 ∞ f ( k T ) z − k = z − 1 F ( z ) F(z,0)=z^{-1}\sum\limits_{k=0}^{\infty}f(kT)z^{-k}=z^{-1}F(z) F(z,0)=z−1k=0∑∞f(kT)z−k=z−1F(z)
这种情况下,物理意义是采样只滞后,不超前,相当于延迟一个整周期。
- m = 1 m=1 m=1 时, F ( z , 1 ) = z − 1 ∑ k = 0 ∞ f [ ( k + 1 ) T ] z − k = F ( z ) − f ( 0 ) F(z,1)=z^{-1}\sum\limits_{k=0}^{\infty}f[(k+1)T]z^{-k}=F(z)-f(0) F(z,1)=z−1k=0∑∞f[(k+1)T]z−k=F(z)−f(0)
这种情况下,如果系统处于零初始状态,则有 f ( 0 ) = 0 f(0)=0 f(0)=0,进而 F ( z , 1 ) = F ( z ) F(z,1)=F(z) F(z,1)=F(z),这种情况的物理意义是正常采样,不滞后。
- 阶跃函数的扩展 Z 变换与 m m m 无关。
证明: F ( z , m ) = z − 1 ∑ k = 0 ∞ f ( k T + m T ) z − k = z − 1 ∑ k = 0 ∞ z − k = z − 1 1 − z − 1 F(z,m)=z^{-1}\sum_{k=0}^{\infty}f(kT+mT)z^{-k}=z^{-1}\sum_{k=0}^{\infty}z^{-k}=\frac{z^{-1}}{1-z^{-1}} F(z,m)=z−1k=0∑∞f(kT+mT)z−k=z−1k=0∑∞z−k=1−z−1z−1
以上就是 Z 变换相关内容了,在此基础上,后期会继续发自控原理的离散系统以及计算机控制系统的相关知识点。这是2023新年前最后一篇,喜欢的朋友可以来主页看往期自控原理的相关内容。