opencv 通过网络连接工业相机_单目摄像机测距(python+opencv)

本文介绍使用单目摄像头和Python OpenCV库计算物体与相机距离的方法,通过相似三角形原理和相机标定技术,探讨行人检测及距离计算的挑战和解决方案。
摘要由CSDN通过智能技术生成

我的论文方向目前是使用单目摄像头实现机器人对人的跟随,首先单目摄像头与kinect等深度摄像头最大的区别是无法有效获取深度信息,那就首先从这方面入手,尝试通过图像获取摄像头与人的距离。 在网上看了几天关于摄像头标定和摄像头焦距等原理的文章,然后通过这篇文章真正启发了我:用python和opencv来测量目标到相机的距离 主要的测距的原理是利用相似三角形计算物体到相机的距离。在这里我的环境为: Ubuntu14.04 + Opencv2.4.9

一 用相似三角形计算物体或者目标到相机的距离

我们将使用相似三角形来计算相机到一个已知的物体或者目标的距离。

相似三角形就是这么一回事:假设我们有一个宽度为 W 的目标或者物体。然后我们将这个目标放在距离我们的相机为 D 的位置。我们用相机对物体进行拍照并且测量物体的像素宽度 P 。这样我们就得出了相机焦距的公式:

F = (P x D) / W

举个例子,假设我在离相机距离 D = 24 英寸的地方放一张标准的 8.5 x 11 英寸的 A4 纸(横着放;W = 11)并且拍下一张照片。我测量出照片中 A4 纸的像素宽度为 P = 249 像素。

因此我的焦距 F 是:

F = (248px x 24in) / 11in = 543.45

当我继续将我的相机移动靠近或者离远物体或者目标时,我可以用相似三角形来计算出物体离相机的距离:

D’ = (W x F) / P

为了更具体,我们再举个例子,假设我将相机移到距离目标 3 英尺(或者说 36 英寸)的地方并且拍下上述的 A4 纸。通过自动的图形处理我可以获得图片中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值