数学复习已经到了强化阶段,相信许多考研的童鞋已经做了不少习题了吧?但是完成一张卷子后应该怎么总结呢?是写出每个题的考点?解题思路?易错点?这有什么用呢?知道了考点、易错点然后呢?
其实不仅对于做卷子,平时做的习题集都应该好好总结。接下来这些步骤大家可以了解一下。
一、做题
(1)首先做题的时候把模棱两可的题目标记一下;
(2)做题的时候突然遗忘某个知识点,立刻动笔在试卷上写下;
(3)做完之后对答案,首先把简略版的错题摘录到A4纸的左边,然后把简略版的答案摘录到A4纸的右边;
(4)摘完错题还不够,第一步里模棱两可的题目也要摘,摘法同第三步;
(5)摘完题目,把第二步中遗忘的知识点去全书里翻出来,依然摘到A4纸上,左边是问题,右边是答案。
无论是题目还是知识点,把不懂的都摘出来,下次复习直接看着左边简略版的题目遮住右边的答案,然后在草稿纸上算,做完这一页再看右边的答案解析。若是再错,则标记它,以后回过头来再做一遍。这样的真题学习方法其实针对性更强,更适合短时间高效率的提高,反复做那些第一遍就能做对的题意义真的不大。
二、总结题型
把历年真题里最常考和最常遗忘的题型,做一个解题方法和技巧的归纳总结。笔记也是做在A4纸上,依然是以自己看得懂为原则。切记,不要长篇大论抄写可有可无的东西,一份好的笔记里应该有你自己的很多体会和领悟。也不要本末倒置,很多同学把笔记做得花里胡哨色彩缤纷,做完之后却把它扔一边,这实在是浪费生命的行为。笔记的形式是人的思维体现,笔记的目的是为了辅助记忆,思维也好,记忆也好,主体永远是人而不是笔记这个客体。这份总结笔记的价值在于能够引导你的解题思路,让你在做一道题的时候可以明确,第一步应该干嘛,第二步应该干嘛,做到有条不紊。
长期来看,养成这样的思维无疑对你的解题能力会有质的提高。其实这一部分内容在初级阶段,强化阶段时老师都已经带你复习到了,你平时做题的意义是强化对各种题型的认知和补充强化班没有涉及的题型。总结题型的意义在于你遇到各种问题就知道对应了什么解法,比如汤老师的证明部分的讲解,看到什么字眼就该用罗尔,拉格朗日或者其他的,这就是对题型的理解。
三、总结方法
有些题目方法有很多种,有的思路很活,有的只是常规解法,这些都要在你刷题中总结出来。比如你在做不等式证明的时候,你就可以先用构造函数多次求导求解,还可以用用泰勒公式构造不等式看否能算出,甚至可用柯西不等式等等来尝试。比如16年数学不等式证明那题,答案给的就是构造函数,但是用泰勒公式一步到位。想算错都难!
四、总结做题常常卡住的点
举个例子,18年高数压轴题,上手就是一个拉格朗日,这平时没遇到过可能就不会想到,所以平时做题就卡在了那个地方,你要记住答案的手法。又另如构造函数的一些骚操作,这都是自己在不断刷题中总结到的,下次做题说不定你就想出来了。
五、总结解题框架
比如,你是否知道极限的解法基本就在7大基本型+夹逼定理+定积分定义+幂函数定义(数二不考)内解决,当你总结出来后,就一个个去试,肯定做得出来。又比如高数的变限积分求导,这也是大家常常犯错的地方,你是否知道除了严格按照变限积分求导公式外,还可以将一维变二维,然后交换积分顺序再求导这些操作呢?
六、建议专题总结穿插整套做题
(1)专题总结:以真题线性代数的2道解答题来说,把每年的真题做归纳和总结,都属于那几个题型,对每个题型的解法做归纳,总共有几种解法。总结的好效果就是,你会发现线代每年考的题型很固定,大概会有解线性方程组、求矩阵、证明线性相关或无关等(不全,自己总结)。那么,以解线性方程组为例,你要对解法进行归纳和对比,这样你会找到异同点。通过系统的总结,你就能在下次的做题,快速的反映出属于哪个类型,哪个解法最快。如果效率高,可以同时完成真题三门课,如果时间有限。最有效果的应该是线性代数和概率数理统计。因为高数比较看重悟性和思维,总结不来,很多人丢分最后也是高数丢分最多。当然,你现在11月,专门做笔记时间不够,可以只总结方法,做简要的方法归纳即可。这个过程要在12月之前完成,12月份,要侧重整套真题、模拟题的训练。
(2)穿插整套做题:这个没别的意思,是为了避免长时间在总结一门课,导致遗忘其他知识点。要特别重视,自己卡在那几个题型最多。然后在专题总结中挑这些重点去总结!简答题优先,线代优先,数理统计有限!
总之,做题绝对不是单纯求多,一定要确保能把每道题都吃透!各位考研er在做题的时候一定要注重质量!不要只顾着追求数量!大家有什么疑惑也可以给微博:文都大班长私信留言哦。
开学季活动入口