变限积分求导公式总结_积分变限函数求导的基本方法

科技论坛 积分上限函数 是高等数学中一类特殊的函数形式,是微积分基本公式(牛顿 - 莱布尼茨公式)的理论基础,是联系微分学和积分学的桥梁,在高等数学中具有重要的地位,因此,研究生入学考试和大学生数学竞赛,历来都把积分变限函数求导(包括积分上限函数和积分下限函数)作为测试的重点内容之一。但在高等数学教材中,对积分变限函数求导的方法讲解的都比较简略,以致很多学生都把这个知识点作为难点内容。本文对积分变限函数求导类型及方法概括总结,并详细解答例题,帮助学生深刻理解积分变限函数的实质及内涵,击破难点。1 积分变限函数基本求导公式积分变限函数求导,其基本原理是以下五个公式[3]: i)若 f(x)在[a,b]上连续,则 在[a,b]上可导,且 ; .同理, . ii)若 f(x)在[a,b]上连续,且 可导,则 ; 同理, . iii)若 f(x)在[a,b]上连续,且 , 可导,则 例 1(2016 考研.数一) . 解 当 时, , . 利用洛必达法则,得 在以上五个公式中,被积函数都不含参变量 x,而仅是积分变量t 的函数,求导时,把 f(t)中的 t 换成 x即可。但做题时经常遇到被积函数中既含有参变量 x,又含有积分变量 t 的情况,可总结为以下两种类型。 2 被积函数中参变量 x 和积分变量 t 可分离的情况定理[1] 若函数 f(x,t)关于变量 x,t 是可分离的,即 , 则 其基本原理,是 g(x)不参与积分运算,将其提到积分号前面,然后利用乘积的求导法则求解。 例 2(2012 天津大学生数学竞赛)设函数 f(x)有连续导数,f(0) =1&#x

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设有 $n$ 个类别,$y_i$ 表示真实标签为第 $i$ 类,$p_i$ 表示预测标签为第 $i$ 类的概率。则交叉熵损失函数为: $$ H(p, y) = -\sum_{i=1}^{n} y_i\log p_i $$ 对于单个样本,如果我们将 $p_i$ 看作模型对第 $i$ 类的预测概率,那么交叉熵损失函数的含义就是:模型的预测结果与真实标签之间的差异程度。 为了最小化交叉熵损失函数,我们需要对模型的预测概率进行调整,使得预测结果与真实标签越接近越好。因此我们需要求出损失函数对模型预测概率的导数,即: $$ \frac{\partial H(p, y)}{\partial p_i} $$ 为了方便计算,我们可以先对 $p_i$ 求导,再将 $p_j$ 代入 $i$ 的位置,得到: $$ \begin{aligned} \frac{\partial H(p, y)}{\partial p_i} &= \frac{\partial}{\partial p_i}(-\sum_{j=1}^{n} y_j\log p_j) \\ &= -\frac{y_i}{p_i} + \sum_{j=1, j\neq i}^{n} \frac{y_j}{p_j}\frac{\partial p_j}{\partial p_i} \\ &= -\frac{y_i}{p_i} + \sum_{j=1, j\neq i}^{n} \frac{y_j}{p_j}\times 0 \\ &= -\frac{y_i}{p_i} \end{aligned} $$ 因此,我们可以得到交叉熵损失函数对模型预测概率的导数为: $$ \frac{\partial H(p, y)}{\partial p_i} = -\frac{y_i}{p_i} $$ 这个导数的含义是:如果模型对第 $i$ 类的预测概率增加了 $\Delta p_i$,那么交叉熵损失函数的变化量为: $$ \begin{aligned} \Delta H &= H(p+\Delta p, y) - H(p, y) \\ &\approx \frac{\partial H(p, y)}{\partial p_i} \Delta p_i \\ &= -\frac{y_i}{p_i} \Delta p_i \end{aligned} $$ 因此,为了最小化交叉熵损失函数,我们可以根据这个导数对模型的预测概率进行调整,使得真实标签对应的概率增加,其他类别的概率减小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值