auc到多少有意义_AUC及其理解

AUC作为二值分类器性能的评价指标,主要通过ROC曲线来展示。本文详细解释了ROC曲线的构成、计算方法以及AUC的含义。AUC值越大,模型排序能力越强,更可能将正样本排在负样本前面。ROC曲线不受样本分布影响,适于应对数据不平衡问题。
摘要由CSDN通过智能技术生成

在互联网精准广告中,可以从多个角度来评估一个CTR模型的性能,但通常以AUC作为模型评估的最直接指标,直观上讲,AUC是从排序能力的角度来对模型进行评估。下面将详细解释AUC的含义及其计算方式,

2 ROC含义及其说明

2.1 ROC曲线理解

ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器的优劣,分类器算法,常用的评价指标主要有precision,recall,F-score;

一个典型的ROC曲线如下图所示:

ROC曲线的横坐标为false positive rate(FPR),纵坐标为true positive rate(TPR),下面详细说明FPR和TPR是如何定义的:

TP:预测是正的样本,实际上也是正的样本

TP:预测是正的样本,实际上是负样本

FN:预测是为负样本,实际上是正样本

TN:预测是为负样本,实际上也是负样本

正确率:测试出来准确的正样本/所有的正样本:TP/(TP + FP)

召回率:测试出来正确的正样本/所有的正样本:TP/(FP + FN)

TPR:true positive rate,TPR = TP / (TP + FN),表示预测为正的正确结果TP在所有正样本T中的占比,显然TPR越大,模型的预估能力更好;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值