前段时间在上Udacity无人驾驶 Term1的课程,里面P3的Behaviour Cloning项目中需要使用亚马逊的云服务器(即AWS,以下使用AWS代替)来训练深度学习的模型。
对于没有接触过AWS的我来说,可以说步步是坑,而且互联网上也并没有非常完整详细的教程,这个Project可以说是折磨我最久,也是最让我痛苦的Project。
让大家少走一些弯路,特此分享出来,希望能帮到大家。
注意:因为我使用的Udacity提供的carnd的虚拟环境,所以以下都使用carnd来代替EC2-User。大家在使用过程中需要注意替换。
登录AWS服务器
这一部分比较简单,我简单写一下。网络上有很多相关的资料,大家不清楚的话可以去查阅,也可以去查AWS的帮助文档。
1.开启Instance
2.ssh carnd@xxx (xxx为公共DNS)
3.输入密码
4.登录成功
上传及引用数据
如果要训练模型的话,需要大量的数据。要在AWS的GPU上训练这些模型,必须要先将这些数据上传到AWS的服务器上,才能引用。
所以我们需要利用scp命令在本地terminal上将本地文件压缩包copy到服务器上。
scp xxxxx(本地路径) carnd(ec2-users)@xxx(公共DNS):/home/carnd(ec2-users)/
(注意,这一步一定要在本地的terminal上才可以。)
利用文件命令在服务器的terminal上打开目标文件夹:
ls /home/carnd/
然后解压:
unzip DATA.zip