含参变量正常积分_含参变量正常积分.ppt

含参变量正常积分

连续性定理 可微性定理 可积性定理 * * 第十九章含参量积分 §1 含参量正常积分 §2 含参量反常积分 §3 欧拉积分 上的连续函数, 确定了一个定义在[a, b]上的函数, x 称为参变量, 上式称为含参变量的积分. 则积分 ⑴ §1 含参量正常积分 一般地,设 f (x, y ) 为区域 上的二元函数, c ( x ), d ( x ) 在 [ a, b ] 连续,定义 含参量的积分 下面讨论含参量积分的连续性、 可微性和可积性. 在[a, b]上连续. 上连续, 则函数 若 在矩形区域 分析 对任何 x ∈ [a, b], 要证: 就有 即 定理19.1 (连续性) (积分号下取极限) 证 设 x, x+Δx ∈ [a, b], 在闭区域 R 上连续, 所以一致连续, 由于 即 只要 就有 就有 所以, 这说明 连续 同理可证, 续, 则含参变量的积分 即在定理的条件下,极限运算与积分运算的顺序 是可交换的,或说可在积分号下取极限 . 上连续, 则 若 定理19.1 表明, 在矩形区域 在[a, b]上连续. 定理19.2(连续性) 如果函数 在区域 上连续,又函数 与 在区间 上连续, 则函数 在[ a, b ]上连续. 证 对积分用换元积分法,令 于是 从而 因为 在矩形 [ a, b ]×[ 0, 1 ] 上连续,由定理 19.1得 在 [ a, b ] 上连续 都在 定理19.3 (可微性) (积分号下求导数) 分析: 要证 即 使得当 时,有 对任意的 由拉格朗日中值定理,存在 使得 证: 所以 因此 从而一致连续,即 只要 ,有 因此 故 I ( x ) 在 x 可导,且 由 x 的任意性,及定理 19.1知I ( x ) 在 [a, b] 有连续的导函数. 在定理的条件下,求导和求积分可交换次序, 也说可在积分号下求导数 定理19.4(可微性) 如果函数 在矩形 上连续, 在 [ a, b ]上可微,且 证: 把 F ( x )看作复合函数: 由复合函数求导法则及变上限定积分的求导法则,有 定理19.5 (可积性) 在[a, b]上可积. 上连续, 则函数 若 在矩形区域 在[c, d]上可积. 记 统称为累次积分或二次积分. 问:累次积分与积分顺序有关吗?即是否有 上连续, 则 若 在矩形区域 定理19.6 (积分交换顺序) 其中 证 记 于是 所以 从而 ( k 为常数 ) 当 u = a 时, 于是,k = 0 即得 取 u = b , 就得 例1 求 解: 记 因为 都是 的连续函数 所以 在 连续,从而 例2. 解: 考虑含参变量 t 的积分所确定的函数 显然, 于是由定理19.3 故 因此得 例3. 验证当 | x | 充分小时, 函数 的 n 阶导数存在, 且 证:令 在原点的某个闭矩形邻域内连续, 由定理19.4 可得 即 同理 当 x = 0 时,有 例4. 解: 由被积函数的特点想到积分:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值