定理 19.3 (可微性)
若函数 f ( x , y ) f(x, y) f(x,y) 与其偏导数 ∂ ∂ x f ( x , y ) \cfrac{\partial}{\partial x} f(x, y) ∂x∂f(x,y) 都在矩形区域 R = [ a , b ] × [ c , d ] R=[a, b] \times[c, d] R=[a,b]×[c,d] 上连续, 则
φ ( x ) = ∫ c d f ( x , y ) d y \varphi(x)=\int_{c}^{d} f(x, y) \mathrm{d} y φ(x)=∫cdf(x,y)dy
在 [ a , b ] [a, b] [a,b] 上可微,且
d d x ∫ c d f ( x , y ) d y = ∫ c d ∂ ∂ x f ( x , y ) d y . \cfrac{\mathrm{d}}{\mathrm{d} x} \int_{c}^{d} f(x, y) \mathrm{d} y=\int_{c}^{d} \cfrac{\partial}{\partial x} f(x, y) \mathrm{d} y . dxd∫cdf(x,y)dy=∫cd∂x∂f(x,y)dy.
证
对于 [ a , b ] [a, b] [a,b] 内任一点 x x x, 设 x + Δ x ∈ [ a , b ] x+\Delta x \in[a, b] x+Δx∈[a,b] (若 x x x为区间端点, 则讨论单侧导数), 则
φ ( x + Δ x ) − φ ( x ) Δ x = ∫ e d f ( x + Δ x , y ) − f ( x , y ) Δ x d y . \cfrac{\varphi(x+\Delta x)-\varphi(x)}{\Delta x}=\int_{e}^{d} \cfrac{f(x+\Delta x, y)-f(x, y)}{\Delta x} \mathrm{~d} y . Δxφ(x+Δx)−φ(x)=