数学分析(十九)-含参量积分1-含参量正常积分2:可微性

本文探讨了在数学分析中,含参量积分与函数可微性的概念。通过定理19.3和定理19.4,证明了如果函数及其偏导数在指定区域连续,则含参量的积分在该区间上可微,并给出了可微性的具体表达式。证明过程中应用了微分学的拉格朗日中值定理和复合函数求导法则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 19.3 (可微性)

若函数 f ( x , y ) f(x, y) f(x,y) 与其偏导数 ∂ ∂ x f ( x , y ) \cfrac{\partial}{\partial x} f(x, y) xf(x,y) 都在矩形区域 R = [ a , b ] × [ c , d ] R=[a, b] \times[c, d] R=[a,b]×[c,d] 上连续, 则

φ ( x ) = ∫ c d f ( x , y ) d y \varphi(x)=\int_{c}^{d} f(x, y) \mathrm{d} y φ(x)=cdf(x,y)dy

[ a , b ] [a, b] [a,b] 上可微,且

d d x ∫ c d f ( x , y ) d y = ∫ c d ∂ ∂ x f ( x , y ) d y . \cfrac{\mathrm{d}}{\mathrm{d} x} \int_{c}^{d} f(x, y) \mathrm{d} y=\int_{c}^{d} \cfrac{\partial}{\partial x} f(x, y) \mathrm{d} y . dxdcdf(x,y)dy=cdxf(x,y)dy.


对于 [ a , b ] [a, b] [a,b] 内任一点 x x x, 设 x + Δ x ∈ [ a , b ] x+\Delta x \in[a, b] x+Δx[a,b] (若 x x x为区间端点, 则讨论单侧导数), 则

φ ( x + Δ x ) − φ ( x ) Δ x = ∫ e d f ( x + Δ x , y ) − f ( x , y ) Δ x   d y . \cfrac{\varphi(x+\Delta x)-\varphi(x)}{\Delta x}=\int_{e}^{d} \cfrac{f(x+\Delta x, y)-f(x, y)}{\Delta x} \mathrm{~d} y . Δxφ(x+Δx)φ(x)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值