设一个空矩阵_QR分解,Cholesky分解,Hadamard不等式,正定矩阵行列式的变分刻画,行列式BM不等式...

be3b6307e94fa32b41dbca55a3f145a0.png
矩阵论记号约定​zhuanlan.zhihu.com
a375204be3b9d15265b949efac72468a.png

QR分解

  • 设矩阵
    满足
    ,则存在
    规范正交系
    上三角矩阵
    ,使得
    ,其中
    满足
    ,且
    主对角元非负。
  • ,则上述QR分解唯一,且上三角方阵
    满足对角元严格为正。
  • 扩充得到规范正交基
    ,则
    ,其中
    阶正交矩阵或酉矩阵,
    是主对角元非负的上三角矩阵。

证明:

,进行Gram–Schmidt正交化,即

存在置换

使得
,即得所求
以及

时,若有QR分解
,则
可逆, 于是
可逆且对角元为正。令
,则
既是下三角方阵又是上三角方阵,从而是对角阵,且
对角元为正。由
可得
,只能有
,亦即
,此时
唯一。

Cholesky分解

  • 设矩阵
    半正定,则存在对角元非负的下三角矩阵
    ,使得
  • 可逆(正定),则上述Cholesky分解唯一,且
    满足对角元严格为正。
  • [Sylvester判则的必要性(充分性可用Cauchy交错定理得到)] 若
    正定,则

证明:写成

并对
应用QR分解,细节留给读者。

Hadamard不等式

  • 设矩阵
    半正定,则
  • 设矩阵
    ,则

证明:

半正定,则Cholesky分解得到下三角方阵
满足
。特别地,
。只需注意到

由于

的每一项都被
控制,利用
即可。

行列式的变分刻画

  • 半正定,则

证明:根据谱分解定理,存在

使
,其中
。记
,则Hadamard不等式表明
。故
;若
正定,则
可使等号成立;否则取
,有

Brunn-Minkowski不等式(行列式版本)及推论

  • 半正定,则
  • [Mahler不等式--几何平均值超可加] 若
    ,则

证明:

正定,使得
。注意到
即证 。
  • 半正定,则

证明:对于

,有
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值