HADAMARD不等式的证明

笔者水平尚浅,写博客主要为了整理学习思路,如有错误或疏漏欢迎各位批评指正。

第一种证明

对n阶方阵A,我们有

\left |det(A) \right |\leq\left \| a_{1} \right \|\left \| a_{2} \right \|......\left \| a_{n} \right \|

若A为可逆矩阵,则A的行列式为0,显然成立。

若A不为可逆矩阵,则可以对A做QR分解

Q为标准正交矩阵,内所有列向量为R_{}^{n}的一组标准正交基。

R为上三角矩阵,且对角元均为非负数

对可逆矩阵A的列向量进行Gram-Schmidt正交化,过程如下:

q_{1}=a_{1};

q_{2}=a_{2}-\frac{q_{1}^{T}a_{2}q_{1}}{q_{1}^{T}q_{1}};

q_{3}=a_{3}-\frac{q_{1}^{T}a_{3}q_{1}}{q_{1}^{T}q_{1}}-\frac{q_{2}^{T}a_{3}q_{2}}{q_{2}^{T}q_{2}}

......

之后同理,得到q_{1} q_{2}q_{3}......q_{n}R^{n}上的一组正交基,对其进行单位化,可以得到一组标准正交基

单位化如下:

\overline{q_{i}}=\frac{q_{i}}{\left \| q_{i} \right \|}

将正交化的过程用矩阵分解的观点进行书写

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值