matlab互相关函数并画图,自相关函数和互相关函数的matlab计算和作图

本文介绍了自相关和互相关在信号分析中的概念,阐述了它们的区别,以及如何在Matlab中通过xcorr函数计算并用图像展示。重点讲解了xcorr的原理和互相关函数的计算方式。此外,还讨论了相关程度与相关函数值的关系,以及不同相关系数的含义。
摘要由CSDN通过智能技术生成

1. 首先说说自相关和互相关的概念。

这个是信号分析里的概念,他们分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。

自相关函数是描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度;互相关函数给出了在频域内两个信号是否相关的一个

判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生

的误差非常有效.

事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设

两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。

那么,如何在matlab中实现这两个相关并用图像显示出来呢?

dt=.1;

t=[0:dt:100];

x=cos(t);

[a,b]=xcorr(x,'unbiased');

plot(b*dt,a)

上面代码是求自相关函数并作图,对于互相关函数,稍微修改一下就可以了,即把[a,b]=xcorr(x,'unbiased');改为[a,b]=xcorr

(x,y,'unbiased');便可。

2. 实现过程:

在Matalb中,求解xcorr的过程事实上是利用Fourier变换中的卷积定理进行的,即R(u)=ifft(fft(f)×fft(g)),其中×表示乘法,注:此

公式仅表示形式计算,并非实际计算所用的公式。当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。事实上,两者既然有定理保证

,那么结果一定是相同的,只是没有用对公式而已。下面是检验两者结果相同的代码:

dt=.1;

t=[0:dt:100];

x=3*sin(t);

y=cos(3*t);

subplot(3,1,1);

plot(t,x);

subplot(3,1,2);

plot(t,y);

[a,b]=xcorr(x,y);

subplot(3,1,3);

plot(b*dt,a);

yy=cos(3*fliplr(t)); % or use: yy=fliplr(y);

z=conv(x,yy);

pause;

subplot(3,1,3);

plot(b*dt,z,'r');

即在xcorr中不使用scaling。

3. 其他相关问题:

1) 相关程度与相关函数的取值有什么联系?

相关系数只是一个比率,不是等单位量度,无什么单位名称,也不是相关的百分数,一般取小数点后两位来表示。相关系数的正负号只表

示相关的方向,绝对值表示相关的程度。因为不是等单位的度量,因而不能说相关系数0.7是0.35两倍,只能说相关系数为0.7的二列变量相关程度

比相关系数为0.35的二列变量相关程度更为密切和更高。也不能说相关系数从0.70到0.80与相关系数从0.30到0.40增加的程度一样大。

对于相关系数的大小所表示的意义目前在统计学界尚不一致,但通常按下是这样认为的:

相关系数 相关程度

0.00-±0.30 微相关

±0.30-±0.50 实相关

±0.50-±0.80 显著相关

±0.80-±1.00 高度相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值