哈尔尺度函数 - Read
图象处理与分析三,图象预处理图象变换,小波 补充:图像分析的数据结构 传统的图像数据结构 拓扑数据结构-把图像描述为一组元素集合和它们的关系;区域邻接曲线图是这一类型数据结构的典型,由一组节点V = {v1,v2,. . . ,vn}和一组弧 E={e1,e2,. . . ,em}组成的代数结构。 四叉树-四叉树是T-金字塔的修正,每个分层的水平上图像被分为四个象限;如果一个父节点的四个子节点有相同的值(例如,亮度),不需要分别记录他们。 图像预处理概述 图像预处理方法被分类为四个种类:象素亮度变换,几何学的变 换,使用处理象素的一个局部邻域的预处理方法, 需要有关整个 图像的知识的图像恢复。 本章的主要内容 3.1 概述和分类 3.2 傅里叶变换和性质 3.3 快速傅里叶变换 3.4 其它可分离图像变换 3.5 霍特林变换 3.1 概述和分类 例-傅立叶域的信息表达 例 例 例 分类 背景 法国数学家傅里叶生于1768年,他被世人铭记的最大贡献记载在 1807年的传记中和后来出版于1822年的"La Theorie Analitique de la chaleur“(热分析理论)一书中。他指出任何周期函数都可以 表示为不同频率的正弦和/或余弦和的形式,每个正弦和/或余弦 乘以不同的系数(现在称这个和为傅里叶级数)。复杂函数可以由简 单的正弦和余弦之和来表示。 非周期的函数(但是这些领域是在曲线是有限的情况下)也可以用 正弦和/或余弦乘以加权函数的积分来表示。在这种情况下的公式 就是傅里叶变换,它的应用在大多数实际应用中比傅里叶级数更广 泛。 用傅里叶级数或变换表示的函数特征可以完全通过傅里叶反过程 来重建,不丢失任何信息。 在过去的一个世纪里,尤其是后50年,傅里叶的思想使整个工业 和学术界都空前繁荣。在20世纪50年代后期,数字计算的出现和快 速傅里叶变换算法的“发明”在信号处理领域产生了巨大变革。 背景 (例) 3.2 傅里叶变换和性质 3.2.2 2-D傅里叶变换 3.2.3 2-D傅里叶变换的性质 2.平移性质 4.旋转性质 离散卷积定理 -统一周期 只有当被采样函数是带限的且周期的(周期为K),此时使采样间隔满足采样定理才可能完全恢复原来的函数。 2-D采样函数s(x,y)是由一组在X方向间隔△x,在Y方向间隔△y的2-D脉冲构成。 对一个带限函数f(x,y)(即它的傅里叶变换在某个有限区间只外为零),如果选择如 下频域里的函数与f(x,y)和s(x,y)的乘积的傅里叶变换相乘,就有可能完全恢复 f(x,y)。 3.3.1 快速傅里叶变换算法原理--库利、图基 只需对正变换的输入作一点小修改就可用于反变换。 如果下式成立:则称正向变换核是可分离的。 3.4.2 沃尔什变换 3.4.3 哈达玛变换 沃尔什变换与哈达玛变换-参考清华大学容观澳书 沃尔什函数的三种排序 3.4.4 离散余弦变换 3.4.5 哈尔变换--哈尔函数定义哈尔小波 哈尔基图像 3.4.6 斜变换-斜(slant)变换也称斯拉特变换。 3.5霍特林变换 -基于图象统计特性的变换 霍特林变换: 小波 1 背景 2 波和小波 3 多分辨率展开 4 一维小波变换 5 二维小波变换 小结 7.1 背景 7.1.1 图像金字塔 图像金字塔 建立图像金字塔 子带编码 (例) 波和小波 波和小波-波与小波之间的差异 时频域分析 生动例子:小波和音乐 变换的理解 变换类型 加窗傅里叶变换 盖伯变换 小波变换-一维连续小波变换 莫莱特(Morlet)小波 莫莱特(Morlet)小波 哈尔变换 离散小波变换的哈尔函数 7.2 多分辨率展开MRA –技术之一 用V0和W0的展开图7.9(e)函数进行的结果 其中,fa(x)是f(x)使用V0尺度函数 的近似,而fd(x)为f(x)-fa(x)的差, 用W0小波和表示。这两个展开式, 如图7.12(e)和(f)所示,将f(x)用 类似高通和低通滤波器的方法分成 两部分。f(x)的低频部分在fa(x)中 得到——fa(x)给出了f(x)在每个积 分区间上的平均值——而高频细节 则在fd(x)中编码。 7.3一维小波变换 -小波变换三种形式:一般小波序列 展开、离散小波变换和连续小波变换 y=x2的哈尔小波序列展开 7.3.2 离散小波变换 一维离