在之前的推文中我向大家介绍过双变量相关分析、偏相关关系等,今天我们来了解一种新的相关关系——
典型相关 。 我们在进行相关性研究时,经常需要考察多个变量与多个变量之间,即
两组变量之间的相关性,并研究它们之间的相关系数
。例如,某个城市的经济发展水平与居民生活水平间的相关关系;儿童生长发育与身体素质之间的相关关系;学习能力与自控力的相关关系等。典型相关分析在实证研究中有广泛的运用,常常被作为结构方程模型研究的基础步骤。 典型相关分析方法的基本思想和主成分分析非常相似,即根据变量间的相关关系,寻找一个或少数几个综合变量(实际观察变量的线性组合)用来替代原变量,从而将二组变量的关系集中到少数几对综合变量的关系上,提取时要求第一对综合变量间的相关性最大,第二对次之,以此类推。这些综合变量被称为
典型变量 ,第一对典型变量间的相关系数则被称为
第一典型相关系数 。典型相关系数度量了这两组变量之间联系的强度。
典型相关模型的基本假设:
两组变量间是线性关系,每对典型变量之间是线性关系,每个典型变量与本组变量之间也是线性关系;在所有的线性组合中,找一对相
