spss典型相关分析_典型相关分析方法及案例介绍

在之前的推文中我向大家介绍过双变量相关分析、偏相关关系等,今天我们来了解一种新的相关关系—— 典型相关 。 我们在进行相关性研究时,经常需要考察多个变量与多个变量之间,即两组变量之间的相关性,并研究它们之间的相关系数1885e7e600c3b40752e9597ad7742c3f.png。例如,某个城市的经济发展水平与居民生活水平间的相关关系;儿童生长发育与身体素质之间的相关关系;学习能力与自控力的相关关系等。典型相关分析在实证研究中有广泛的运用,常常被作为结构方程模型研究的基础步骤。 典型相关分析方法的基本思想和主成分分析非常相似,即根据变量间的相关关系,寻找一个或少数几个综合变量(实际观察变量的线性组合)用来替代原变量,从而将二组变量的关系集中到少数几对综合变量的关系上,提取时要求第一对综合变量间的相关性最大,第二对次之,以此类推。这些综合变量被称为 典型变量 ,第一对典型变量间的相关系数则被称为 第一典型相关系数 。典型相关系数度量了这两组变量之间联系的强度。 典型相关模型的基本假设:两组变量间是线性关系,每对典型变量之间是线性关系,每个典型变量与本组变量之间也是线性关系;在所有的线性组合中,找一对相关系数最大的线性组合,用这个组合的单相关系数来表示两组变量的相关性,叫做两组变量的典型相关系数,而这两个线性组合叫做一对典型变量。典型相关还要求各组内变量间不能有高度的复共线性。 典型相关分析的思路: 7b14e0d552629907ba91c9d3c0de2f83.png 典型相关分析需满足的条件: 典型相关分析是在原始数据满足一定条件和假设的前提下进行的,这些条件包括原始变量要服从多元正态分布,样本容量至少要大于原始变量个数(一般为变量个数的10 ~20 倍),这些假设包括两组变量之间要具有相关性,每组原始变量中能够综合出典型变量, 即原始变量组内要有一定的相关性等。 若这些条件和假设无法满足,就不能进行典型相关分析。

案例操作演示

下面我将用一个简单的案例向大家介绍如何在SPSS中进行典型相关分析。 下图是案例数据截图: 9decd2b1598e105e93d0300b942c33bc.png 案例数据中记录了受访者对某城市各方面的满意程度,其中,现代建筑、多元文化、生态环境被归为了 生态与人文维度 (红色框选) ,舒适性和安全性被归为了 安全与舒适维度 (橙色框选) ,我希望对这两个维度的进行典型相关关系。 注意事项: 本操作使用的是SPSS25.0版本,SPSS老版本应该不能直接进行典型相关分析。 如果新版本也不能进行典型相关分析,那可能是没有安装Python扩展。 分析步骤: 点击菜单分析 -> 相关 -> 典型相关性,将安全与舒适维度选入集合1,生态与人文维度选入集合2; (两组变量的地位相等) 点击选项复选按钮,勾选显示框中的所有选项; 点击继续,点击确定。 对话框如下图所示: 6b68d7e3fe1857ea3ce0c24135ff5555.png

输出结果解析

(1)相关系数矩阵 d5b3d4d8bd29ed85cc1d16ce3a3afdc1.png 上图反映了各变量间的相关系数,从中可以知道各变量间的相关程度。 从整体相关系数矩阵来看,两组变量内部,以及各变量之间的相关系数都不小,相关系数在0.490~0.714之间。 (2)典型相关的描述统计 6c25876760c204cf38ee5b90f3e8c36d.png 上图为典型相关系数表,其中给出了两个集合的具体变量,其中集合1内的元素有现代建筑、多元文化、生态环境,集合2内的元素有舒适性和安全性;其中进行典型相关性分析的有2个数据对。 (3)典型相关系数及其检验 72580e2e2f592ac8f653ecb72f1a3280.png 上图给出的是典型相关系数及其检验,结果表明只有第一个典型相关系数是显著的(P=0.000<0.001),它的相关系数是0.720。 因此,我们只需要对第一个典型相关变量进行解释。 (4)典型变量系数 844ef4b502df512ee15cd3854ecd15a6.png 上图为典型变量的系数表,有标准典型相关系数和未标准典型相关系数两类。选择看哪种典型变量系数表,取决于研究变量的单位,如果单位相同,则看未标准化的典型相关系数,如果单位不同,则看标准化后的典型相关系数。本例中,这些变量的单位都相同,因此我们选择未标准化的典型相关系数,即 橙色 框选的部分。 由此,我们可以得出第一对典型变量由标准化数据组成的计算公式: U1=-0.452*现代建筑-0.195*多元文化-0.690*生态环境 V1=-0.891*舒适性-0.340*安全性 并且u1和v1的相关系数为0.720,有较强的正相关性。 通过以上表达式,可以看出U1 主要受生态环境的影响较大; V1主要受舒适性的影响较大。 可以发现,标准典型相关系数都是负的,这导致典型变量的现实含义不好解释;出现这种情况可能是由于前面提到的变量内部的相关关系较大,导致 本案例数据建立的典型相关模型的效果不佳。 (5)典型负荷系数和交叉负荷系数 典型负荷系数也称为结构相关系数,指的是一个典型变量与本组所有变量的简单相关系数。 交叉负荷系数指的是一个典型变量与另一组变量各个变量的简单相关系数。 5da8bac65be6c190f101d180e2c19bef.png 上图的典型负荷系数表 (红框) 说明生态与人文维度的第一典型变量与现代建筑的相关系数为-0.836,与多元文化的相关系数为-0.779,与生态环境的相关系数为-0.928。从另一方面说明生态与人文维度与它的各变量之间均为负相关,其中与生态环境的相关性最强。安全与舒适维度同理。 交叉负荷系数 (橙框) 说明现代建筑与集合2的第一个典型变量的相关性是-0.602,多元文化与集合2的第一个典型变量的相关性是-0.561,生态环境与集合2的第一个典型变量的相关性是-0.668。集合2的交叉负荷系数表解读方式同理。 (6)已解释的方差比例 3ee800de79833526c646f57ec3197ccf.png 上图中包括组内代表比例和交叉解释比例,是典型相关分析中的重要组成部分。 从该表可知,生态与人文维度被自身的第一典型变量解释了72.2%,安全与舒适维度被自身的第一典型变量解释了83.4%; 生态与人文维度被安全与舒适维度的第一典型变量解释了37.4%,安全与舒适维度被生态与人文维度的第一典型变量解释了43.2%。 总体来说,自变量的解释能力较好。
已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页