【Python】当你需要计算1,000,000+次一维向量的相关系数, 怎么算最快?

背景

最近需要用python计算大量的一维向量之间的相关系数, 其中:

        测试数据: (1000, 100)   one of them (100,)

        模板数据: (1000, 100)   one of them (100,)

那么就需要计算1,000,000次相关系数,那么在这种情况下, 计算效率就变得很重要了.

直接看提速好几百倍的升级版->【Python】当你需要计算1,000,000+次一维向量的相关系数, 怎么算最快(2)?

----------------------以下为第一次探索这个问题的原文-------------------------

常见的几种计算相关系数的方法有: 

基于Pandas

        DataFrame.corr()

        实践了特别慢, 需要构建frame, 不推荐.         

基于Numpy

        1. np.cov()

              这个是算协方差, 后续还需要手写代码进一步计算相关系数

        2.np.corrcoef() 

             这个其实就是皮尔森系数的numpy实现, 算线性相关的.

 

基于scipy的三大相关性系数 (pearson系数, spearman系数,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值