python调用训练好的模型_TensorFlow 调用预训练好的模型—— Python 实现

1. 准备预训练好的模型

TensorFlow 预训练好的模型被保存为以下四个文件

1

data 文件是训练好的参数值,meta 文件是定义的神经网络图,checkpoint 文件是所有模型的保存路径,如下所示,为简单起见只保留了一个模型。

model_checkpoint_path: "/home/senius/python/c_python/test/model-40"

all_model_checkpoint_paths: "/home/senius/python/c_python/test/model-40"

复制代码

2. 导入模型图、参数值和相关变量

import tensorflow as tf

import numpy as np

sess = tf.Session()

X = None # input

yhat = None # output

def load_model():

"""

Loading the pre-trained model and parameters.

"""

global X, yhat

modelpath = r'/home/senius/python/c_python/test/'

saver = tf.train.import_meta_graph(modelpath + 'model-40.meta')

saver.restore(sess, tf.train.latest_checkpoint(modelpath))

graph = tf.get_default_graph()

X = graph.get_tensor_by_name("X:0")

yhat = graph.get_tensor_by_name("tanh:0")

print('Successfully load the pre-trained model!')

复制代码通过 saver.restore 我们可以得到预训练的所有参数值,然后再通过 graph.get_tensor_by_name 得到模型的输入张量和我们想要的输出张量。

3. 运行前向传播过程得到预测值

def predict(txtdata):

"""

Convert data to Numpy array which has a shape of (-1, 41, 41, 41 3).

Test a single example.

Arg:

txtdata: Array in C.

Returns:

Three coordinates of a face normal.

"""

global X, yhat

data = np.array(txtdata)

data = data.reshape(-1, 41, 41, 41, 3)

output = sess.run(yhat, feed_dict={X: data}) # (-1, 3)

output = output.reshape(-1, 1)

ret = output.tolist()

return ret

复制代码通过 feed_dict 喂入测试数据,然后 run 输出的张量我们就可以得到预测值。

4. 测试

load_model()

testdata = np.fromfile('/home/senius/python/c_python/test/04t30t00.npy', dtype=np.float32)

testdata = testdata.reshape(-1, 41, 41, 41, 3) # (150, 41, 41, 41, 3)

testdata = testdata[0:2, ...] # the first two examples

txtdata = testdata.tolist()

output = predict(txtdata)

print(output)

# [[-0.13345889747142792], [0.5858198404312134], [-0.7211828231811523],

# [-0.03778800368309021], [0.9978875517845154], [0.06522832065820694]]

复制代码本例输入是一个三维网格模型处理后的 [41, 41, 41, 3] 的数据,输出一个表面法向量坐标 (x, y, z)。

获取更多精彩,请关注「seniusen」!1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值